@article{BlaettnerDasPaprotkaetal.2016, author = {Bl{\"a}ttner, Sebastian and Das, Sudip and Paprotka, Kerstin and Eilers, Ursula and Krischke, Markus and Kretschmer, Dorothee and Remmele, Christian W. and Dittrich, Marcus and M{\"u}ller, Tobias and Schuelein-Voelk, Christina and Hertlein, Tobias and Mueller, Martin J. and Huettel, Bruno and Reinhardt, Richard and Ohlsen, Knut and Rudel, Thomas and Fraunholz, Martin J.}, title = {Staphylococcus aureus Exploits a Non-ribosomal Cyclic Dipeptide to Modulate Survival within Epithelial Cells and Phagocytes}, series = {PLoS Pathogens}, volume = {12}, journal = {PLoS Pathogens}, number = {9}, doi = {10.1371/journal.ppat.1005857}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-180380}, year = {2016}, abstract = {Community-acquired (CA) Staphylococcus aureus cause various diseases even in healthy individuals. Enhanced virulence of CA-strains is partly attributed to increased production of toxins such as phenol-soluble modulins (PSM). The pathogen is internalized efficiently by mammalian host cells and intracellular S. aureus has recently been shown to contribute to disease. Upon internalization, cytotoxic S. aureus strains can disrupt phagosomal membranes and kill host cells in a PSM-dependent manner. However, PSM are not sufficient for these processes. Here we screened for factors required for intracellular S. aureus virulence. We infected escape reporter host cells with strains from an established transposon mutant library and detected phagosomal escape rates using automated microscopy. We thereby, among other factors, identified a non-ribosomal peptide synthetase (NRPS) to be required for efficient phagosomal escape and intracellular survival of S. aureus as well as induction of host cell death. By genetic complementation as well as supplementation with the synthetic NRPS product, the cyclic dipeptide phevalin, wild-type phenotypes were restored. We further demonstrate that the NRPS is contributing to virulence in a mouse pneumonia model. Together, our data illustrate a hitherto unrecognized function of the S. aureus NRPS and its dipeptide product during S. aureus infection.}, language = {en} } @article{DugarSvenssonBischleretal.2016, author = {Dugar, Gaurav and Svensson, Sarah L. and Bischler, Thorsten and Waldchen, Sina and Reinhardt, Richard and Sauer, Markus and Sharma, Cynthia M.}, title = {The CsrA-FliW network controls polar localization of the dual-function flagellin mRNA in Campylobacter jejuni}, series = {Nature Communications}, volume = {7}, journal = {Nature Communications}, doi = {10.1038/ncomms11667}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-173201}, year = {2016}, abstract = {The widespread CsrA/RsmA protein regulators repress translation by binding GGA motifs in bacterial mRNAs. CsrA activity is primarily controlled through sequestration by multiple small regulatory RNAs. Here we investigate CsrA activity control in the absence of antagonizing small RNAs by examining the CsrA regulon in the human pathogen Campylobacter jejuni. We use genome-wide co-immunoprecipitation combined with RNA sequencing to show that CsrA primarily binds flagellar mRNAs and identify the major flagellin mRNA (flaA) as the main CsrA target. The flaA mRNA is translationally repressed by CsrA, but it can also titrate CsrA activity. Together with the main C. jejuni CsrA antagonist, the FliW protein, flaA mRNA controls CsrA-mediated post-transcriptional regulation of other flagellar genes. RNA-FISH reveals that flaA mRNA is expressed and localized at the poles of elongating cells. Polar flaA mRNA localization is translation dependent and is post-transcriptionally regulated by the CsrA-FliW network. Overall, our results suggest a role for CsrA-FliW in spatiotemporal control of flagella assembly and localization of a dual-function mRNA.}, language = {en} }