@article{DornHerzberg2021, author = {Dorn, Franziska and Herzberg, Moriz}, title = {Response to Letter to the Editor "Keeping Late Thrombectomy Imaging Protocols Simple to Avoid Analysis Paralysis"}, series = {Clinical Neuroradiology}, volume = {31}, journal = {Clinical Neuroradiology}, number = {3}, issn = {1869-1439}, doi = {10.1007/s00062-021-01091-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-307023}, pages = {813-814}, year = {2021}, language = {en} } @article{WernerHiguchiNoseetal.2022, author = {Werner, Rudolf A. and Higuchi, Takahiro and Nose, Naoko and Toriumi, Fujio and Matsusaka, Yohji and Kuji, Ichiei and Kazuhiro, Koshino}, title = {Generative adversarial network-created brain SPECTs of cerebral ischemia are indistinguishable to scans from real patients}, series = {Scientific reports}, volume = {12}, journal = {Scientific reports}, doi = {10.1038/s41598-022-23325-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300757}, year = {2022}, abstract = {Deep convolutional generative adversarial networks (GAN) allow for creating images from existing databases. We applied a modified light-weight GAN (FastGAN) algorithm to cerebral blood flow SPECTs and aimed to evaluate whether this technology can generate created images close to real patients. Investigating three anatomical levels (cerebellum, CER; basal ganglia, BG; cortex, COR), 551 normal (248 CER, 174 BG, 129 COR) and 387 pathological brain SPECTs using N-isopropyl p-I-123-iodoamphetamine (123I-IMP) were included. For the latter scans, cerebral ischemic disease comprised 291 uni- (66 CER, 116 BG, 109 COR) and 96 bilateral defect patterns (44 BG, 52 COR). Our model was trained using a three-compartment anatomical input (dataset 'A'; including CER, BG, and COR), while for dataset 'B', only one anatomical region (COR) was included. Quantitative analyses provided mean counts (MC) and left/right (LR) hemisphere ratios, which were then compared to quantification from real images. For MC, 'B' was significantly different for normal and bilateral defect patterns (P < 0.0001, respectively), but not for unilateral ischemia (P = 0.77). Comparable results were recorded for LR, as normal and ischemia scans were significantly different relative to images acquired from real patients (P ≤ 0.01, respectively). Images provided by 'A', however, revealed comparable quantitative results when compared to real images, including normal (P = 0.8) and pathological scans (unilateral, P = 0.99; bilateral, P = 0.68) for MC. For LR, only uni- (P = 0.03), but not normal or bilateral defect scans (P ≥ 0.08) reached significance relative to images of real patients. With a minimum of only three anatomical compartments serving as stimuli, created cerebral SPECTs are indistinguishable to images from real patients. The applied FastGAN algorithm may allow to provide sufficient scan numbers in various clinical scenarios, e.g., for "data-hungry" deep learning technologies or in the context of orphan diseases.}, language = {en} } @article{StetterWeidnerLillaetal.2021, author = {Stetter, Christian and Weidner, Franziska and Lilla, Nadine and Weiland, Judith and Kunze, Ekkehard and Ernestus, Ralf-Ingo and Muellenbach, Ralf Michael and Westermaier, Thomas}, title = {Therapeutic hypercapnia for prevention of secondary ischemia after severe subarachnoid hemorrhage: physiological responses to continuous hypercapnia}, series = {Scientific Reports}, volume = {11}, journal = {Scientific Reports}, number = {1}, doi = {10.1038/s41598-021-91007-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-260779}, pages = {11715}, year = {2021}, abstract = {Temporary hypercapnia has been shown to increase cerebral blood flow (CBF) and might be used as a therapeutical tool in patients with severe subarachnoid hemorrhage (SAH). It was the aim of this study was to investigate the optimum duration of hypercapnia. This point is assumed to be the time at which buffer systems become active, cause an adaptation to changes of the arterial partial pressure of carbon dioxide (PaCO2) and annihilate a possible therapeutic effect. In this prospective interventional study in a neurosurgical ICU the arterial partial pressure of carbon dioxide (PaCO\(_2\)) was increased to a target range of 55 mmHg for 120 min by modification of the respiratory minute volume (RMV) one time a day between day 4 and 14 in 12 mechanically ventilated poor-grade SAH-patients. Arterial blood gases were measured every 15 min. CBF and brain tissue oxygen saturation (StiO\(_2\)) were the primary and secondary end points. Intracranial pressure (ICP) was controlled by an external ventricular drainage. Under continuous hypercapnia (PaCO\(_2\) of 53.17 ± 5.07), CBF was significantly elevated between 15 and 120 min after the start of hypercapnia. During the course of the trial intervention, cardiac output also increased significantly. To assess the direct effect of hypercapnia on brain perfusion, the increase of CBF was corrected by the parallel increase of cardiac output. The maximum direct CBF enhancing effect of hypercapnia of 32\% was noted at 45 min after the start of hypercapnia. Thereafter, the CBF enhancing slowly declined. No relevant adverse effects were observed. CBF and StiO\(_2\) reproducibly increased by controlled hypercapnia in all patients. After 45 min, the curve of CBF enhancement showed an inflection point when corrected by cardiac output. It is concluded that 45 min might be the optimum duration for a therapeutic use and may provide an optimal balance between the benefits of hypercapnia and risks of a negative rebound effect after return to normal ventilation parameters.}, language = {en} } @article{RauschenbergervonWardenburgSchaeferetal.2020, author = {Rauschenberger, Vera and von Wardenburg, Niels and Schaefer, Natascha and Ogino, Kazutoyo and Hirata, Hiromi and Lillesaar, Christina and Kluck, Christoph J. and Meinck, Hans-Michael and Borrmann, Marc and Weishaupt, Andreas and Doppler, Kathrin and Wickel, Jonathan and Geis, Christian and Sommer, Claudia and Villmann, Carmen}, title = {Glycine Receptor Autoantibodies Impair Receptor Function and Induce Motor Dysfunction}, series = {Annals of Neurology}, volume = {88}, journal = {Annals of Neurology}, number = {3}, doi = {10.1002/ana.25832}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-216005}, pages = {544 -- 561}, year = {2020}, abstract = {Objective Impairment of glycinergic neurotransmission leads to complex movement and behavioral disorders. Patients harboring glycine receptor autoantibodies suffer from stiff-person syndrome or its severe variant progressive encephalomyelitis with rigidity and myoclonus. Enhanced receptor internalization was proposed as the common molecular mechanism upon autoantibody binding. Although functional impairment of glycine receptors following autoantibody binding has recently been investigated, it is still incompletely understood. Methods A cell-based assay was used for positive sample evaluation. Glycine receptor function was assessed by electrophysiological recordings and radioligand binding assays. The in vivo passive transfer of patient autoantibodies was done using the zebrafish animal model. Results Glycine receptor function as assessed by glycine dose-response curves showed significantly decreased glycine potency in the presence of patient sera. Upon binding of autoantibodies from 2 patients, a decreased fraction of desensitized receptors was observed, whereas closing of the ion channel remained fast. The glycine receptor N-terminal residues \(^{29}\)A to \(^{62}\)G were mapped as a common epitope of glycine receptor autoantibodies. An in vivo transfer into the zebrafish animal model generated a phenotype with disturbed escape behavior accompanied by a reduced number of glycine receptor clusters in the spinal cord of affected animals. Interpretation Autoantibodies against the extracellular domain mediate alterations of glycine receptor physiology. Moreover, our in vivo data demonstrate that the autoantibodies are a direct cause of the disease, because the transfer of human glycine receptor autoantibodies to zebrafish larvae generated impaired escape behavior in the animal model compatible with abnormal startle response in stiff-person syndrome or progressive encephalitis with rigidity and myoclonus patients.}, language = {en} } @article{KollikowskiSchuhmannNieswandtetal.2020, author = {Kollikowski, Alexander M. and Schuhmann, Michael K. and Nieswandt, Bernhard and M{\"u}llges, Wolfgang and Stoll, Guido and Pham, Mirko}, title = {Local Leukocyte Invasion during Hyperacute Human Ischemic Stroke}, series = {Annals of Neurology}, volume = {87}, journal = {Annals of Neurology}, number = {3}, doi = {10.1002/ana.25665}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-212168}, pages = {466-479}, year = {2020}, abstract = {Objective Bridging the gap between experimental stroke and patients by ischemic blood probing during the hyperacute stage of vascular occlusion is crucial to assess the role of inflammation in human stroke and for the development of adjunct treatments beyond recanalization. Methods We prospectively observed 151 consecutive ischemic stroke patients with embolic large vessel occlusion of the anterior circulation who underwent mechanical thrombectomy. In all these patients, we attempted microcatheter aspiration of 3 different arterial blood samples: (1) within the core of the occluded vascular compartment and controlled by (2) carotid and (3) femoral samples obtained under physiological flow conditions. Subsequent laboratory analyses comprised leukocyte counting and differentiation, platelet counting, and the quantification of 13 proinflammatory human chemokines/cytokines. Results Forty patients meeting all clinical, imaging, interventional, and laboratory inclusion criteria could be analyzed, showing that the total number of leukocytes significantly increased under the occlusion condition. This increase was predominantly driven by neutrophils. Significant increases were also apparent for lymphocytes and monocytes, accompanied by locally elevated plasma levels of the T-cell chemoattractant CXCL-11. Finally, we found evidence that short-term clinical outcome (National Institute of Health Stroke Scale at 72 hours) was negatively associated with neutrophil accumulation. Interpretation We provide the first direct human evidence that neutrophils, lymphocytes, and monocytes, accompanied by specific chemokine upregulation, accumulate in the ischemic vasculature during hyperacute stroke and may affect outcome. These findings strongly support experimental evidence that immune cells contribute to acute ischemic brain damage and indicate that ischemic inflammation initiates already during vascular occlusion. Ann Neurol 2020;87:466-479}, language = {en} } @article{StengelVuralBrunderetal.2019, author = {Stengel, Helena and Vural, Atay and Brunder, Anna-Michelle and Heinius, Annika and Appeltshauser, Luise and Fiebig, Bianca and Giese, Florian and Dresel, Christian and Papagianni, Aikaterini and Birklein, Frank and Weis, Joachim and Huchtemann, Tessa and Schmidt, Christian and K{\"o}rtvelyessy, Peter and Villmann, Carmen and Meinl, Edgar and Sommer, Claudia and Leypoldt, Frank and Doppler, Kathrin}, title = {Anti-pan-neurofascin IgG3 as a marker of fulminant autoimmune neuropathy}, series = {Neurology: Neuroimmunology \& Neuroinflammation}, volume = {6}, journal = {Neurology: Neuroimmunology \& Neuroinflammation}, number = {5}, doi = {10.1212/NXI.0000000000000603}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-202462}, year = {2019}, abstract = {Objective To identify and characterize patients with autoantibodies against different neurofascin (NF) isoforms. Methods Screening of a large cohort of patient sera for anti-NF autoantibodies by ELISA and further characterization by cell-based assays, epitope mapping, and complement binding assays. Results Two different clinical phenotypes became apparent in this study: The well-known clinical picture of subacute-onset severe sensorimotor neuropathy with tremor that is known to be associated with IgG4 autoantibodies against the paranodal isoform NF-155 was found in 2 patients. The second phenotype with a dramatic course of disease with tetraplegia and almost locked-in syndrome was associated with IgG3 autoantibodies against nodal and paranodal isoforms of NF in 3 patients. The epitope against which these autoantibodies were directed in this second phenotype was the common Ig domain found in all 3 NF isoforms. In contrast, anti-NF-155 IgG4 were directed against the NF-155-specific Fn3Fn4 domain. The description of a second phenotype of anti-NF-associated neuropathy is in line with some case reports of similar patients that were published in the last year. Conclusions Our results indicate that anti-pan-NF-associated neuropathy differs from anti-NF-155-associated neuropathy, and epitope and subclass play a major role in the pathogenesis and severity of anti-NF-associated neuropathy and should be determined to correctly classify patients, also in respect to possible differences in therapeutic response.}, language = {en} } @article{KarlWussmannKressetal.2019, author = {Karl, Franziska and Wußmann, Maximiliane and Kreß, Luisa and Malzacher, Tobias and Fey, Phillip and Groeber-Becker, Florian and {\"U}{\c{c}}eyler, Nurcan}, title = {Patient-derived in vitro skin models for investigation of small fiber pathology}, series = {Annals of Clinical and Translational Neurology}, volume = {6}, journal = {Annals of Clinical and Translational Neurology}, number = {9}, doi = {10.1002/acn3.50871}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201649}, pages = {1797-1806}, year = {2019}, abstract = {Objective To establish individually expandable primary fibroblast and keratinocyte cultures from 3-mm skin punch biopsies for patient-derived in vitro skin models to investigate of small fiber pathology. Methods We obtained 6-mm skin punch biopsies from the calf of two patients with small fiber neuropathy (SFN) and two healthy controls. One half (3 mm) was used for diagnostic intraepidermal nerve fiber density (IENFD). From the second half, we isolated and cultured fibroblasts and keratinocytes. Cells were used to generate patient-derived full-thickness three-dimensional (3D) skin models containing a dermal and epidermal component. Cells and skin models were characterized morphologically, immunocyto- and -histochemically (vimentin, cytokeratin (CK)-10, CK 14, ki67, collagen1, and procollagen), and by electrical impedance. Results Distal IENFD was reduced in the SFN patients (2 fibers/mm each), while IENFD was normal in the controls (8 fibers/mm, 7 fibers/mm). Two-dimensional (2D) cultured skin cells showed normal morphology, adequate viability, and proliferation, and expressed cell-specific markers without relevant difference between SFN patient and healthy control. Using 2D cultured fibroblasts and keratinocytes, we obtained subject-derived 3D skin models. Morphology of the 3D model was analogous to the respective skin biopsy specimens. Both, the dermal and the epidermal layer carried cell-specific markers and showed a homogenous expression of extracellular matrix proteins. Interpretation Our protocol allows the generation of disease-specific 2D and 3D skin models, which can be used to investigate the cross-talk between skin cells and sensory neurons in small fiber pathology.}, language = {en} } @article{BittnerBobakFeuchtenbergeretal.2011, author = {Bittner, Stefan and Bobak, Nicole and Feuchtenberger, Martin and Herrmann, Alexander M and G{\"o}bel, Kerstin and Kinne, Raimund W and Hansen, Anker J and Budde, Thomas and Kleinschnitz, Christoph and Frey, Oliver and Tony, Hans-Peter and Wiendl, Heinz and Meuth, Sven G}, title = {Expression of K\(_2\)\(_P\)5.1 potassium channels on CD4\(^+\)T lymphocytes correlates with disease activity in rheumatoid arthritis patients}, series = {Arthritis Research \& Therapy}, volume = {13}, journal = {Arthritis Research \& Therapy}, number = {R21}, doi = {10.1186/ar3245}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-139334}, year = {2011}, abstract = {Introduction CD4+ T cells express K2P5.1 (TWIK-related acid-sensitive potassium channel 2 (TASK2); KCNK5), a member of the two-pore domain potassium channel family, which has been shown to influence T cell effector functions. Recently, it was shown that K2P5.1 is upregulated upon (autoimmune) T cell stimulation. The aim of this study was to correlate expression levels of K2P5.1 on T cells from patients with rheumatoid arthritis (RA) to disease activity in these patients. Methods Expression levels of K2P5.1 were measured by RT-PCR in the peripheral blood of 58 patients with RA and correlated with disease activity parameters (C-reactive protein levels, erythrocyte sedimentation rates, disease activity score (DAS28) scores). Twenty patients undergoing therapy change were followed-up for six months. Additionally, synovial fluid and synovial biopsies were investigated for T lymphocytes expressing K2P5.1. Results K2P5.1 expression levels in CD4+ T cells show a strong correlation to DAS28 scores in RA patients. Similar correlations were found for serological inflammatory parameters (erythrocyte sedimentation rate, C-reactive protein). In addition, K2P5.1 expression levels of synovial fluid-derived T cells are higher compared to peripheral blood T cells. Prospective data in individual patients show a parallel behaviour of K2P5.1 expression to disease activity parameters during a longitudinal follow-up for six months. Conclusions Disease activity in RA patients correlates strongly with K2P5.1 expression levels in CD4+ T lymphocytes in the peripheral blood in cross-sectional as well as in longitudinal observations. Further studies are needed to investigate the exact pathophysiological mechanisms and to evaluate the possible use of K2P5.1 as a potential biomarker for disease activity and differential diagnosis.}, language = {en} } @article{EhlingGoebBittneretal.2013, author = {Ehling, Petra and G{\"o}b, Eva and Bittner, Stefan and Budde, Thomas and Ludwig, Andreas and Kleinschnitz, Christoph and Meuth, Sven G.}, title = {Ischemia-induced cell depolarization: does the hyperpolarization-activated cation channel HCN2 affect the outcome after stroke in mice?}, series = {Experimental \& Translational Stroke Medicine}, volume = {5}, journal = {Experimental \& Translational Stroke Medicine}, number = {16}, doi = {10.1186/2040-7378-5-16}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-129240}, year = {2013}, abstract = {Background Brain ischemia is known to include neuronal cell death and persisting neurological deficits. A lack of oxygen and glucose are considered to be key mediators of ischemic neurodegeneration while the exact mechanisms are yet unclear. In former studies the expression of two different two-pore domain potassium \((K_{2P})\) channels (TASK1, TREK1) were shown to ameliorate neuronal damage due to cerebral ischemia. In neurons, TASK channels carrying hyperpolarizing \(K^+\) leak currents, and the pacemaker channel HCN2, carrying depolarizing Ih, stabilize the membrane potential by a mutual functional interaction. It is assumed that this ionic interplay between TASK and HCN2 channels enhances the resistance of neurons to insults accompanied by extracellular pH shifts. Methods In C57Bl/6 (wildtype, WT), \(hcn2^{+/+}\) and \(hcn2^{-/-}\) mice we used an in vivo model of cerebral ischemia (transient middle cerebral artery occlusion (tMCAO)) to depict a functional impact of HCN2 in stroke formation. Subsequent analyses comprise behavioural tests and hcn2 gene expression assays. Results After 60 min of tMCAO induction in WT mice, we collected tissue samples at 6, 12, and 24 h after reperfusion. In the infarcted neocortex, hcn2 expression analyses revealed a nominal peak of hcn2 expression 6 h after reperfusion with a tendency towards lower expression levels with longer reperfusion times. Hcn2 gene expression levels in infarcted basal ganglia did not change after 6 h and 12 h. Only at 24 h after reperfusion, hcn2 expression significantly decreases by ~55\%. However, 30 min of tMCAO in hcn2-/- as well as hcn2+/+ littermates induced similar infarct volumes. Behavioural tests for global neurological function (Bederson score) and motor function/coordination (grip test) were performed at day 1 after surgery. Again, we found no differences between the groups. Conclusions Here, we hypothesized that the absence of HCN2, an important functional counter player of TASK channels, affects neuronal survival during stroke-induced tissue damage. However, together with a former study on TASK3 these results implicate that both TASK3 and HCN2 which were supposed to be neuroprotective due to their pH-dependency, do not influence ischemic neurodegeneration during stroke in the tMCAO model.}, language = {en} } @phdthesis{Foley2001, author = {Foley, Paul Bernard}, title = {Beans, roots and leaves}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-1181975}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2001}, abstract = {The author presents the first detailed review of the pharmacological therapy of parkinsonism from ancient times until the near present (1980). It is not clear whether parkinsonism as it is now defined - a progressive neurodegenerative disorder of the basal ganglia characterized by sharply reduced striatal dopamine levels, particularly in the striatum - has always affected a significant minority of aged persons, but suggestive evidence to this effect in the older literature is reviewed. The major discussion commences, however, with the administration of various plant alkaloids to parkinsonian patients in the second half of the 19th century. Antiparkinsonian therapy since this time may be divided into a number of phases: 1. The employment of alkaloids derived from solanaceous plants: initially hyoscyamine, then hyoscine/scopolamine and atropine. The discovery and characterization of these alkaloids, and the gradual recognition that other pharmacologically useful solanaceous alkaloids (such as duboisine) were identical with one or other of these three compounds, is discussed. 2. With the outbreak of encephalitis lethargica following the First World War, parkinsonian patient numbers increased dramatically, leading to a multiplicity of new directions, including the use of another solanaceous plant, stramonium, of extremely high atropine doses, and of harmala alkaloids. 3. The so-called "Bulgarian treatment" was popularized in western Europe in the mid-1930s. It was also a belladonna alkaloid-based therapy, but associated with greater efficacy and fewer side effects. This approach, whether as actual plant extracts or as defined combinations of belladonna alkaloids, remained internationally dominant until the end of the 1940s. 4. Synthetic antiparkinsonian agents were examined following the Second World War, with the aim of overcoming the deficiencies of belladonna alkaloid therapy. These agents fell into two major classes: synthetic anticholinergic (= antimuscarinic) agents, such as benzhexol, and antihistaminergic drugs, including diphenhydramine. These agents were regarded as more effective than plant-based remedies, but certainly not as cures for the disease. 5. A complete change in direction was heralded by the discovery in 1960 of the striatal dopamine deficit in parkinsonism. This led to the introduction of L-DOPA therapy for parkinsonism, the first approach directed against an identified physiological abnormality in the disorder. 6. Subsequent developments have thus far concentrated on refinement or supplementation of the L-DOPA effect. Recent attempts to develop neuroprotective or -restorative approaches are also briefly discussed. The thesis also discusses the mechanisms by which the various types of antiparkinsonian agent achieved their effects, and also the problems confronting workers at various periods in the design and assessment of novel agents. The impact of attitudes regarding the etiology and nature of parkinsonism, particularly with regard to symptomatology, is also considered. Finally, the history of antiparkinsonian therapy is discussed in context of the general development of both clinical neurology and fundamental anatomical, physiological and biochemical research. In particular, the deepening understanding of the neurochemical basis of central nervous system function is emphasized, for which reason the history of dopamine research is discussed in some detail. This history of antiparkinsonian therapy also illustrates the fact that the nature of experimental clinical pharmacology has markedly changed throughout this period: No longer the preserve of individual physicians, it is now based firmly on fundamental laboratory research, the clinical relevance of which is not always immediately apparent, and which is only later examined in (large scale) clinical trials. It is concluded that antiparkinsonian therapy was never irrational or without basis, but has always been necessarily rooted in current knowledge regarding neural and muscular function. The achievements of L-DOPA therapy, the first successful pharmacological treatment for a neurodegenerative disorder, derived from the fruitful union of the skills and contributions of different types by laboratory scientists, pharmacologists and clinicians.}, subject = {Parkinson-Krankheit}, language = {en} }