@phdthesis{Hecht2021, author = {Hecht, Markus}, title = {Liquid-Crystalline Perylene Bisimide and Diketopyrrolopyrrole Assemblies}, doi = {10.25972/OPUS-21698}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-216987}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {The research presented in this thesis illustrates that self-assembly of organic molecules guided by intermolecular forces is a versatile bottom-up approach towards functional materials. Through the specific design of the monomers, supramolecular architectures with distinct spatial arrangement of the individual building blocks can be realized. Particularly intriguing materials can be achieved when applying the supramolecular approach to molecules forming liquid-crystalline phases as these arrange in ordered, yet mobile structures. Therefore, they exhibit anisotropic properties on a macroscopic level. It is pivotal to precisely control the interchromophoric arrangement as functions originate in the complex structures that are formed upon self-assembly. Consequently, the aim of this thesis was the synthesis and characterization of liquid-crystalline phases with defined supramolecular arrangements as well as the investigation of the structure-property relationship. For this purpose, perylene bisimide and diketopyrrolopyrrole chromophores were used as they constitute ideal building blocks towards functional supramolecular materials due to their thermal stability, lightfastness, as well as excellent optical and electronic features desirable for the application in, e.g., organic electronics.}, subject = {Selbstorganisation}, language = {en} } @phdthesis{PeethambaranNairSyamala2021, author = {Peethambaran Nair Syamala, Pradeep}, title = {Bolaamphiphilic Rylene Bisimides: Thermodynamics of Self-assembly and Stimuli-responsive Properties in Water}, doi = {10.25972/OPUS-21342}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-213424}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {The present thesis demonstrates how different thermodynamic aspects of self-assembly and stimuli-responsive properties in water can be encoded on the structure of π-amphiphiles, consisting of perylene or naphthalene bisimide cores. Initially, quantitative thermodynamic insights into the entropically-driven self-assembly was studied for a series of naphthalene bisimides with UV/Vis and ITC measurements, which demonstrated that their thermodynamic profile of aggregation is heavily influenced by the OEG side chains. Subsequently, a control over the bifurcated thermal response of entropically driven and commonly observed enthalpically driven self-assembly was achieved by the modulation of glycol chain orientation. Finally, Lower Critical Solution Temperature (LCST) phenomenon observed for these dyes was investigated as a precise control of this behavior is quintessential for self-assembly studies as well as to generate 'smart' materials. It could be shown that the onset of phase separation for these molecules can be encoded in their imide substituents, and they are primarily determined by the supramolecular packing, rather than the hydrophobicity of individual monomers.}, subject = {Supramolekulare Chemie}, language = {en} } @phdthesis{Shen2021, author = {Shen, Chia-An}, title = {Dicyanomethylene Squaraines: Aggregation and G-Quadruplex Complexation}, doi = {10.25972/OPUS-24359}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-243599}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Squaraine dyes have attracted more attention in the past decade due to their strong and narrow absorption and fluorescence along with the easily functionalized molecular structure. One successful approach of core functionalization is to replace one oxygen of the squaric carbonyl group with a dicyanomethylene group, which shifts the absorption and emission into the near infrared (NIR) region and at the same time leads to a rigid, planar structure with C2v symmetry. However, such squaraines tend to aggregate cofacially in solution due to dispersion forces and dipole-dipole interactions, usually leading to H-type exciton coupling with undesired blue-shifted spectrum and quenched fluorescence. Therefore, the goal of my research was the design of dicyanomethylene-substituted squaraine dyes that self-assemble into extended aggregates in solution with J-type coupling, in order to retain or even enhance their outstanding optical properties. Toward this goal, bis(squaraine) dyes were envisioned with two squaraine units covalently linked to trigger a slip-stacked packing motif within the aggregates to enable J-type coupling. In my first project, bis(squaraine) dye BisSQ1 was synthesized, in which two dicyanomethylene squaraine chromophores are covalently linked. Concentration and temperature-dependent UV/Vis/NIR spectroscopy experiments reveal that BisSQ1 undergoes cooperative self-assembly resulting in J-type aggregates in a solvent mixture of toluene/1,1,2,2-tetrachloroethane (TCE) (98:2, v/v). The J type exciton coupling is evident from the significantly red shifted absorption maximum at 886 nm and the fluorescence peak at 904 nm. In conclusion, this was a first example to direct squaraine dye aggregation in solution to the more desired slip-stacked packing leading to J-type exciton coupling by simply connecting two dyes in a head-to-tail bis chromophore structure. Connecting two squaraine dyes with an additional phenylene spacer (BisSQ2) leads to two different polymorphs with very distinct absorption spectra upon cooling down a solution of BisSQ2 in a solvent mixture of toluene/TCE (98:2, v/v) with different rates. Accordingly, rapid cooling resulted in rigid helical nanorods with an absorption spectrum showing a panchromatic feature, while slow cooling led to a sheet-like structure with a significant bathochromic shift in the absorption spectrum. It was discovered that the conventional molecular exciton model failed to explain the panchromatic absorption features of the nanorods for the given packing arrangement, therefore more profound theoretical investigations based on the Essential States Model (ESM) were applied to unveil the importance of intermolecular charge transfer (ICT) to adequately describe the panchromatic absorption spectrum. Moreover, the red-shift observed in the spectrum for the sheet-like structure can be assigned to the interplay of Coulomb coupling and ICT-mediated coupling. Furthermore, the same bis-chromophore strategy was adopted for constructing an NIR-II emitter with a bathochromically-shifted spectrum. In chloroform, BisSQ3 exhibits an absorption maximum at 961 nm with a significant bathochromic shift (1020 cm-1) compared to the reference mono-squaraine SQ, indicating intramolecular J-type coupling via head-to-tail arrangement of two squaraine dyes. Moreover, BisSQ3 shows a fluorescence peak at 971 nm with a decent quantum yield of 0.33\%. In less polar toluene, BisSQ3 self-assembles into nanofibers with additional intermolecular J-type coupling, causing a pronounced bathochromic shift with absorption maximum at 1095 nm and a fluorescence peak at 1116 nm. Thus, connecting two quinoline-based squaraines in a head-to-tail fashion leads to not only intra-, but also intermolecular J-type exciton coupling, which serves as a promising strategy to shift the absorption and emission of organic fluorophores into the NIR-II window while retaining decent quantum yields. In conclusion, my research illustrates based on squaraine dyes how a simple modification of the molecular structure can significantly affect the aggregation behavior and further alter the optical properties of dye aggregates. Elongated supramolecular structures based on dicyanomethylene substituted squaraine dyes were successfully established by covalently linking two squaraine units to form a bis-chromophore structure. Then, a simple but efficient general approach was established to direct squaraine dye aggregation in solution to the more desired slip-stacked packing leading to J-type exciton coupling by directly connecting two squaraine dyes in a head-to-tail fashion without spacer units. Moreover, the additional spacer between the squaraine dyes in BisSQ2 allowed different molecular conformations, which leads to two different morphologies depending on the cooling rates for a hot solution. Hence, this is a promising strategy to realize supramolecular polymorphism. In general, it is expected that the concept of constructing J-aggregates by the bis-chromophore approach can be extended to entirely different classes of dyes since J-aggregates possess a variety of features such as spectral shifts into the NIR window, fluorescence enhancement, and light harvesting, which are commonly observed and utilized for numerous fundamental studies and applications. Moreover, the insights on short-range charge transfer coupling for squaraine dyes is considered of relevance for all materials based on alternating donor-acceptor π-systems. The panchromatic spectral feature is in particular crucial for acceptor-donor-acceptor (ADA) dyes, which are currently considered as very promising materials for the development of bulk heterojunction solar cells.}, subject = {Squaraine}, language = {en} } @phdthesis{Sapotta2021, author = {Sapotta, Meike}, title = {Perylene Bisimide Cyclophanes: Recognition of Alkaloids, Aggregation Behavior in Aqueous Environment and Guest-Mediated Chirality Transfer}, doi = {10.25972/OPUS-20002}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-200028}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Inspired by the fact that sufficient solubility in aqueous media can be achieved by functional substitution of perylene bisimides (PBIs) with polar groups, one of the essential aims of this thesis was the design and successful synthesis of the new water-soluble PBI cyclophanes [2PBI]-1m and [2PBI]-1p, which are appended with branched, hydrophilic oligoethylene glycol (OEG) chains. Subsequently, the focus was set on the elucidation of properties of PBI cyclophane hosts which are also of relevance for recognition processes in biological systems. The performance of the new amphiphilic PBI cyclophane [2PBI]-1p as synthetic receptors for various natural aromatic alkaloids in aqueous media was thoroughly investigated. Alkaloids represent a prominent class of ubiquitous nitrogen containing natural compounds with a great structural variety and diverse biological activity. As of yet, no chromophore host acting as a molecular probe for a range of alkaloids such as harmine or harmaline is known. In addition, the self-association behavior of cyclophane host [2PBI]-1m and its reference monomer in water was studied in order to gain insights into the thermodynamic driving forces affecting the self-assembly process of these two PBI systems in aqueous environment. Moreover, the chirality transfer upon guest binding previously observed for a PBI cyclophane was investigated further. The assignment of the underlying mechanism of guest recognition to either the induced fit or conformational selection model was of particular interest.}, subject = {Supramolekulare Chemie}, language = {en} } @phdthesis{Kaufmann2019, author = {Kaufmann, Christina}, title = {Discrete Supramolecular Architectures of Bay-linked Perylene Bisimide Dimers by Self-Assembly and Folding}, doi = {10.25972/OPUS-17300}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-173005}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Supramolecular self-assembly of perylene bisimide (PBI) dyes via non-covalent forces gives rise to a high number of different PBI architectures with unique optical and functional properties. As these properties can be drastically influenced by only slightly structural changes of the formed supramolecular ensembles (Chapter 2.1) the controlled self-assembly of PBI dyes became a central point of current research to design innovative materials with a high potential for different applications as for example in the fields of organic electronics or photovoltaics. As PBI dyes show a strong tendency to form infinite aggregated structures (Chapter 2.2) the aim of this thesis was to precisely control their self-assembly to create small, structurally well-defined PBI assemblies in solution. Chapter 2.3 provides an overview on literature known strategies that were established to realize this aim. It could be demonstrated that especially backbone-directed intra- and intermolecular self-assembly of covalently linked Bis-PBI dyes evolved as one of the most used strategies to define the number of stacked PBI chromophores by using careful designed spacer units with regard to their length and flexibility. By using conventional spectroscopic methods like UV/Vis and fluorescence experiments in combination with NMR measurements an in-depth comparison of the molecular and optical properties in solution both in the non-stacked and aggregated state of the target compounds could be elucidated to reveal structure-property relationships of different PBI architectures. Thus, it could be demonstrated, that spacer units that pre-organize two PBI chromophores with an inter-planar distance of r < 7 {\AA} lead to an intramolecular folding, whereas linker moieties with a length between 7 to 11 {\AA} result in an intermolecular self-assembly of the respective Bis-PBIs dyes via dimerization to form well-defined quadruple PBI pi-stacks. Hence, if the used spacer units ensure an inter-planar distance r > 14 {\AA} larger oligomeric PBI pi-stacks are generated. In Chapter 4 a detailed analysis of the exciton coupling in a highly defined H-aggregate quadruple PBI pi-stack is presented. Therefore, bay-tethered PBI dye Bis-PBI 1 was investigated by concentration-dependent UV/Vis spectroscopy in THF and toluene as well as by 2D-DOSY-NMR spectroscopy, ESI mass spectrometry and AFM measurements confirming that Bis-PBI 1 self-assembles exclusively into dimers with four closely pi-stacked PBI chromophores. Furthermore, with the aid of broadband fluorescence upconversion spectroscopy (FLUPS) ensuring broadband detection range and ultrafast time resolution at once, ultrafast Frenkel exciton relaxation and excimer formation dynamics in the PBI quadruple pi-stack within 1 ps was successfully investigated in cooperation with the group of Dongho Kim. Thus, it was possible to gain for the first time insights into the exciton dynamics within a highly defined synthetic dye aggregate beyond dimers. By analysing the vibronic line shape in the early-time transient fluorescence spectra in detail, it could be demonstrated that the Frenkel exciton is entirely delocalized along the quadruple stack after photoexcitation and immediately loses its coherence followed by the formation of the excimer state. In Chapter 5 four well-defined Bis-PBI folda-dimers Bis-PBIs 2-4 were introduced, where linker units of different length (r < 7 {\AA}) and steric demand were used to gain distinct PBI dye assemblies in the folded state. Structural elucidation based on in-depth UV/Vis, CD and fluorescence experiments in combination with 1D and 2D NMR studies reveals a stacking of the two PBI chromophores upon folding, where geometry-optimized structures obtained from DFT calculations suggest only slightly different arrangements of the PBI units enforced by the distinct spacer moieties. With the resulting optical signatures of Bis-PBIs 2-4 ranging from conventional Hj-type to monomer like absorption features, the first experimental proof of a PBI-based "null-aggregate" could be presented, in which long- and short-range exciton coupling fully compensate each other. Hence, the insights of this chapter pinpoint the importance of charge-transfer mediated short-range exciton coupling that can significantly influence the properties of pi-stacked PBI chromophores In the last part of this thesis (Chapter 6), spacer-controlled self-assembly of four bay-linked Bis-PBI dyes Bis-PBIs 5-8 into well-defined supramolecular architectures was investigated, where the final aggregate structures are substantially defined by the nature of the used spacer units. By systematically extending the backbone length from 7 to 15 {\AA} defining the inter-planar distance between the tethered chromophores, different assemblies from defined quadruple PBI pi-stacks to larger oligomeric pi-stacks could be gained upon aggregation. In conclusion, the synthesis of nine covalently linked PBI dyes in combination with a detailed investigation of their spacer-mediated self-assembly behaviour in solution concerning structure-properties-relationships was presented within this thesis. The results confirm a strong exciton coupling in different types of Bis-PBI architectures e.g. folda-dimers or highly defined quadruple pi-stacks, which significantly influences their optical properties upon self-assembly.}, subject = {Supramolekulare Chemie}, language = {en} } @phdthesis{Kirchner2019, author = {Kirchner, Eva}, title = {Discrete Supramolecular Stacks by Self-Assembly and Folding of Bis(merocyanine) Dyes}, doi = {10.25972/OPUS-15941}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-159419}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {The present thesis describes the development of a strategy to create discrete finite-sized supramolecular stacks of merocyanine dyes. Thus, bichromophoric stacks of two identical or different chromophores could be realized by folding of bis(merocyanine) dyes and their optical properties were discussed in terms of exciton theory. Quantum chemical calculations revealed strong exciton coupling between the chromophores within the homo- and hetero-π-stacks and the increase of the J-band of the hetero-dimers with increasing energy difference between the excited states of the chromophores could be attributed not only to the different magnitudes of transition dipole moments of the chromophores but also to the increased localization of the excitation in the respective exciton state. Furthermore, careful selection of the length of the spacer unit that defines the interplanar distance between the tethered chromophores directed the self-assembly of the respective bis(merocyanines) into dimers, trimers and tetramers comprising large, structurally precise π-stacks of four, six or eight merocyanine chromophores. It could be demonstrated that the structure of such large supramolecular architectures can be adequately elucidated by commonly accessible analysis tools, in particular NMR techniques in combination with UV/vis measurements and mass spectrometry. Supported by TDDFT calculations, the absorption spectra of the herein investigated aggregates could be explained and a relationship between the absorption properties and the number of stacking chromophores could be established based on exciton theory.}, subject = {Merocyanine}, language = {en} } @phdthesis{KlotzbachverhFimmel2018, author = {Klotzbach [verh. Fimmel], Stefanie}, title = {Synthese und Charakterisierung kovalent organischer K{\"a}figverbindungen basierend auf Tribenzotriquinacen-Einheiten}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-166034}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Porous functional materials are promising candidates for applications in the areas of heterogeneous catalysis, sensing, gas storage and separation, or membranes. As one class of suchlike materials, organic cage compounds have attracted attention because of their unique properties compared to extended frameworks. The tribenzotriquinacene (TBTQ) scaffold possessing three orthogonal indane moieties provides a suitable building block for the efficient synthesis of organic cage compounds. In this thesis the synthesis of molecular cubes, tetrahedra and bipyramids by crosslinking the catechol units of TBTQ with various diboronic acids is reported. Structure and shape of the molecular objects are thereby determined by the geometry of the diboronic acids. Notably, both narcissistic and social self-sorting phenomena could be observed for ternary mixtures of building blocks. In addition host-guest complexation was observed for the trigonal bipyramid cage. Fullerenes C60 as well as C70 were almost quantitively encapsulated. Further investigations of this behaviour showed a preference for C60 in a competitive situation.}, subject = {K{\"a}figverbindungen}, language = {de} } @phdthesis{Dhara2017, author = {Dhara, Ayan}, title = {Stimuli-Responsive Self-Assembly and Spatial Functionalization of Organic Cages Based on Tribenzotriquinacenes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-154762}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {Within this thesis, synthetic strategies for self-assembled organic cage compounds have been developed that allow for both stimuli-responsive control over assembly/disassembly processes and spatial control over functionalization. To purposefully operate the reversible assembly of organic cages, boron-nitrogen dative bonds have been exploited for the formation of a well-defined, discrete bipyramidal organic assembly in solution. Thermodynamic association equilibria for cage formation have been investigated by Isothermal Titration Calorimetry (ITC). Temperature-dependent NMR studies revealed a reversible cage opening upon heating and quantitative reassembly upon cooling. For the spatial functionalization of organic cages, two divergent molecular building units have been designed and synthesized, namely tribenzotriquinacene derivatives possessing a terminal alkyne moiety at the apical position and a meta-diboronic acid having a pyridyl group at the 2-position. Facile access to a variety of apically functionalized tribenzotriquinacenes has been illustrated by post-synthetic modifications at the terminal alkyne group by Sonogashira cross-coupling and azide-alkyne click reactions. Finally, these apically functionalized tribenzotriquinacene building blocks have been implemented into boronate ester-based organic cage compounds showing modular exohedral functionalities.}, subject = {Selbstorganisation}, language = {en} } @phdthesis{Goerl2015, author = {G{\"o}rl, Daniel}, title = {Hydrophobe Effekte bolaamphiphiler Rylenbisimide}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-123172}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Die Selbstorganisation von amphiphilen Molek{\"u}len z{\"a}hlt zu den am intensivsten bearbeiteten Forschungsgebieten der Supramolekularen Chemie. Die faszinierenden supramolekularen Architekturen der Natur zeigen eindrucksvoll, wie neuartige Funktionen durch das Zusammenspiel wohl-definierter Molek{\"u}lensembles in einer w{\"a}ssrigen Umgebung entstehen. Es ist bekannt, dass der hydrophobe Effekt dabei eine entscheidende Rolle in der Selbstorganisation spielt und somit die Funktion eines Systems wesentlich bestimmt. Obwohl die Komplexit{\"a}t der bekannten Beispiele aus der Natur unerreicht ist, wurden in den letzten Jahren unz{\"a}hlige k{\"u}nstliche supramolekulare Architekturen basierend auf amphiphilen Molek{\"u}len erschaffen, mit vielf{\"a}ltigen Anwendungsm{\"o}glichkeiten an der Schnittstelle von Chemie, Biologie und Physik. Darunter er{\"o}ffnen insbesondere amphiphile π-konjugierte Systeme einen einfachen Zugang zu vielf{\"a}ltigen Strukturen, da im w{\"a}ssrigen Medium starke π-π-Wechselwirkungen als strukturbildendes Element ausgenutzt werden k{\"o}nnen. Vor allem wegen vielversprechender Anwendungsm{\"o}glichkeiten spiegelt sich die Selbstorganisation solcher Systeme in einem hohen Forschungsinteresse wider. Dennoch ist das Wirken des hydrophoben Effekts in der Selbstassemblierung amphiphiler π-konjugierter Molek{\"u}le weitgehend unverstanden. Die vorliegende Arbeit befasste sich daher mit der Frage, welche physikochemischen Grundprinzipien die Bildung von supramolekularen Polymeren basierend auf amphiphilen π-konjugierten Molek{\"u}len in Wasser steuern und wie der hydrophobe Effekt die Funktionalit{\"a}t solcher Strukturen beeinflusst. Bolaamphiphile Perylenbisimide (PBIs) und Naphthalinbisimide (NBIs) erwiesen sich dabei f{\"u}r das Molek{\"u}ldesign als besonders geeignet, weil sie vergleichsweise einfach dargestellt werden k{\"o}nnen, ihre hohe Symmetrie weniger komplexe Assoziationsprozesse begr{\"u}ndet und die Untersuchung ihrer Selbstassemblierung im w{\"a}ssrigen Medium weiterhin einen Vergleich erlaubt, wie sich der hydrophobe Effekt bez{\"u}glich unterschiedlich großen π-Systemen auswirkt. Es konnte gezeigt werden, dass OEG-basierte Rylenbisimide unter bestimmten strukturgeometrischen Voraussetzungen eine entropiegetriebene Aggregation aufweisen, wenn die Freisetzung von Wassermolek{\"u}len aus einer wohl-definierten Hydrath{\"u}lle ausreicht, um den Enthalpiegewinn aus den im w{\"a}ssrigen Medium verst{\"a}rkten Dispersionswechselwirkungen zwischen den π-Fl{\"a}chen zu {\"u}bertreffen. Im vorliegenden Fall wurde dies durch das Pinsel-Strukturmotiv der symmetrisch angebrachten Imidsubstituenten erreicht, f{\"u}r die sich damit einhergehend eine g{\"a}nzlich andere Temperaturabh{\"a}ngigkeit beobachten ließ und somit eine g{\"a}nzlich andere Funktionalit{\"a}t, als man sie aus organischen L{\"o}sungsmitteln kennt. Wasser als L{\"o}sungsmittel f{\"u}hrt also nicht nur zu einer signifikanten Bindungsverst{\"a}rkung, sondern {\"o}ffnet Zugang zu supramolekularen Systemen mit neuartigen Funktionen. Die entropiegetriebene Freisetzung von Wassermolek{\"u}len konnte daher im Rahmen dieser Arbeit ausgenutzt werden, um gleichzeitig die intrinsische Ordnung im π-Stapel von PBIs zu erh{\"o}hen, was anhand eines temperatursensorischen Hydrogels anschaulich demonstriert wurde. Dar{\"u}ber hinaus stellte sich heraus, dass Wasser ein geeignetes L{\"o}sungsmittel zur Darstellung supramolekularer Kompositmaterialien ist. Wie anhand sich instantan bildender Co-Aggregate gezeigt wurde, ist die entropiegetriebene Assemblierung der entscheidende Faktor zur Darstellung von komplexeren supramolekularen Strukturen, die {\"u}berdies einen Schritt hin zu den hochkomplexen multimolekularen Anordnungen der Natur darstellen.}, subject = {Selbstorganisation}, language = {de} } @phdthesis{Rest2015, author = {Rest, Christina}, title = {Self-assembly of amphiphilic oligo(phenylene ethynylene)-based (bi)pyridine ligands and their Pt(II) and Pd(II) complexes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-133248}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {The presented work in the field of supramolecular chemistry describes the synthesis and detailed investigation of (bi)pyridine-based oligo(phenylene ethynylene) (OPE) amphiphiles, decorated with terminal glycol chains. The metal-ligating property of these molecules could be exploited to coordinate to Pd(II) and Pt(II) metal ions, respectively, resulting in the creation of novel metallosupramolecular π-amphiphiles of square-planar geometry. The focus of the presented studies is on the self-assembly behaviour of the OPE ligands and their corresponding metal complexes in polar and aqueous environment. In this way, the underlying aggregation mechanism (isodesmic or cooperative) is revealed and the influence of various factors on the self-assembly process in supramolecular systems is elucidated. In this regard, the effect of the molecular design of the ligand, the coordination to a metal centre as well as the surrounding medium, the pH value and temperature is investigated.}, subject = {Supramolekulare Chemie}, language = {en} }