@article{Scheer1980, author = {Scheer, Ulrich}, title = {Structural organization of spacer chromatin between transcribed ribosomal RNA genes in amphibian oocytes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-41057}, year = {1980}, abstract = {Transcribed nucleolar chomatin, including the spacer regions interspersed between the rRNA genes, is different from the bulk of nontranscribed chromatin in that the DNA of these regions appears to be in an extended (B) conformation when examined by electron microscopy. The possibility that this may reflect artificial unfolding of nucleosomes during incubation in very low salt buffers as routinely used in such spread preparations has been examined by studying the influence of various ion concentrations on nucleolar chromatin structure. Amplified nucleolar chromatin of amphibian oocytes (Xenopus laevis, Pleurodeles waltlii, Triturus cristatus) was spread in various concentrations of NaCl (range 0 to 20 mM). Below 1 mM salt spacer chromatin frequently revealed a variable number of irregularly shaped beads, whereas above this concentration the chromatin axis appeared uniformly smooth. At all salt concentrations studied, however, the length distribution of spacer and gene regions was identical. Preparations fixed with glutaraldehyde instead of formaldehyde, or unftxed preparations, were indistinguishable in this respect. The observations indicate that (i) rDNA spacer regions are not compacted into nucleosomal particles and into supranucleosomal structures when visualized at chromatin stabilizing salt concentrations (e.g., 20 mM NaCl), and (ii) spacer DNA is covered by a uniform layer of proteins of unknown nature which, at very low salt concentrations (below 1 mM NaCl), can artificially give rise to the appearance of small granular particles of approximately nucleosome-like sizes. These particles, however, are different from nucleosomes in that they do not foreshorten the associated spacer DNA. The data support the concept of an altered nucleohistone conformation not only in transcribed chromatin but also in the vicinity of transcriptional events.}, subject = {Cytologie}, language = {en} } @article{ScheerSommervilleMueller1980, author = {Scheer, Ulrich and Sommerville, John and M{\"u}ller, Ulrike}, title = {DNA is assembled into globular supranucleosomal chromatin structures by nuclear contents of amphibian oocytes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-39671}, year = {1980}, abstract = {The assembly of DNA into nucleosomal and supranucleosomal chromatin structures has been studied (i) by injection of circular DNA molecules (plasmids) into nuclei of Pleurodeles waltlii oocytes; and (ii) by in vitro incubation of plasmid molecules with the supernatant fraction from oocyte nuclei of Pleurodeles and Xenopus laevis, followed by purification of nucleoprotein structures formed with sucrose gradient centrifugation. [n both types of experiments , spread preparations of the newly assembled and transcriptionally inactive chromatin , examined by electron microscopy , show dense globular higher order (supranucleosomal) packing forms. Under partially relaxing (low salt) preparation conditions granular chromatin subunits of about 30 nm diameter can be seen either as widely spaced particles or in closely packed aggregates. The transcriptionally inactive endogenous chromatin of chromomeres of lampbrush chromosomes is arranged in similar higher order chromatin units. A correlation is found between the sizes of the DN A molecule probes used and the numbers of nucleosomes and higher order globules in the assembled chromatin structures. After prolonged dispersion in low salt buffers , these globular chromatin units unfold into chains of7-12 nucleosomes. The results support the concept that chromatin is arranged , under physiological ion concentrations as they are present in the nucleus , in supranucleosomal units of globular morphology.}, language = {en} }