@article{MeirKannapinDiefenbacheretal.2021, author = {Meir, Michael and Kannapin, Felix and Diefenbacher, Markus and Ghoreishi, Yalda and Kollmann, Catherine and Flemming, Sven and Germer, Christoph-Thomas and Waschke, Jens and Leven, Patrick and Schneider, Reiner and Wehner, Sven and Burkard, Natalie and Schlegel, Nicolas}, title = {Intestinal epithelial barrier maturation by enteric glial cells is GDNF-dependent}, series = {International Journal of Molecular Sciences}, volume = {22}, journal = {International Journal of Molecular Sciences}, number = {4}, issn = {1422-0067}, doi = {10.3390/ijms22041887}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-258913}, year = {2021}, abstract = {Enteric glial cells (EGCs) of the enteric nervous system are critically involved in the maintenance of intestinal epithelial barrier function (IEB). The underlying mechanisms remain undefined. Glial cell line-derived neurotrophic factor (GDNF) contributes to IEB maturation and may therefore be the predominant mediator of this process by EGCs. Using GFAP\(^{cre}\) x Ai14\(^{floxed}\) mice to isolate EGCs by Fluorescence-activated cell sorting (FACS), we confirmed that they synthesize GDNF in vivo as well as in primary cultures demonstrating that EGCs are a rich source of GDNF in vivo and in vitro. Co-culture of EGCs with Caco2 cells resulted in IEB maturation which was abrogated when GDNF was either depleted from EGC supernatants, or knocked down in EGCs or when the GDNF receptor RET was blocked. Further, TNFα-induced loss of IEB function in Caco2 cells and in organoids was attenuated by EGC supernatants or by recombinant GDNF. These barrier-protective effects were blunted when using supernatants from GDNF-deficient EGCs or by RET receptor blockade. Together, our data show that EGCs produce GDNF to maintain IEB function in vitro through the RET receptor.}, language = {en} } @article{PrietoGarciaTomaškovićShahetal.2021, author = {Prieto-Garcia, Cristian and Tomašković, Ines and Shah, Varun Jayeshkumar and Dikic, Ivan and Diefenbacher, Markus}, title = {USP28: oncogene or tumor suppressor? a unifying paradigm for squamous cell carcinoma}, series = {Cells}, volume = {10}, journal = {Cells}, number = {10}, issn = {2073-4409}, doi = {10.3390/cells10102652}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-248409}, year = {2021}, abstract = {Squamous cell carcinomas are therapeutically challenging tumor entities. Low response rates to radiotherapy and chemotherapy are commonly observed in squamous patients and, accordingly, the mortality rate is relatively high compared to other tumor entities. Recently, targeting USP28 has been emerged as a potential alternative to improve the therapeutic response and clinical outcomes of squamous patients. USP28 is a catalytically active deubiquitinase that governs a plethora of biological processes, including cellular proliferation, DNA damage repair, apoptosis and oncogenesis. In squamous cell carcinoma, USP28 is strongly expressed and stabilizes the essential squamous transcription factor ΔNp63, together with important oncogenic factors, such as NOTCH1, c-MYC and c-JUN. It is presumed that USP28 is an oncoprotein; however, recent data suggest that the deubiquitinase also has an antineoplastic effect regulating important tumor suppressor proteins, such as p53 and CHK2. In this review, we discuss: (1) The emerging role of USP28 in cancer. (2) The complexity and mutational landscape of squamous tumors. (3) The genetic alterations and cellular pathways that determine the function of USP28 in squamous cancer. (4) The development and current state of novel USP28 inhibitors.}, language = {en} }