@article{AdamDeimelPardoMedinaetal.2018, author = {Adam, Alexander and Deimel, Stephan and Pardo-Medina, Javier and Garc{\´i}a-Mart{\´i}nez, Jorge and Konte, Tilen and Lim{\´o}n, M. Carmen and Avalos, Javier and Terpitz, Ulrich}, title = {Protein activity of the \(Fusarium\) \(fujikuroi\) rhodopsins CarO and OpsA and their relation to fungus-plant interaction}, series = {International Journal of Molecular Sciences}, volume = {19}, journal = {International Journal of Molecular Sciences}, number = {1}, issn = {1422-0067}, doi = {10.3390/ijms19010215}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-285125}, year = {2018}, abstract = {Fungi possess diverse photosensory proteins that allow them to perceive different light wavelengths and to adapt to changing light conditions in their environment. The biological and physiological roles of the green light-sensing rhodopsins in fungi are not yet resolved. The rice plant pathogen Fusarium fujikuroi exhibits two different rhodopsins, CarO and OpsA. CarO was previously characterized as a light-driven proton pump. We further analyzed the pumping behavior of CarO by patch-clamp experiments. Our data show that CarO pumping activity is strongly augmented in the presence of the plant hormone indole-3-acetic acid and in sodium acetate, in a dose-dependent manner under slightly acidic conditions. By contrast, under these and other tested conditions, the Neurospora rhodopsin (NR)-like rhodopsin OpsA did not exhibit any pump activity. Basic local alignment search tool (BLAST) searches in the genomes of ascomycetes revealed the occurrence of rhodopsin-encoding genes mainly in phyto-associated or phytopathogenic fungi, suggesting a possible correlation of the presence of rhodopsins with fungal ecology. In accordance, rice plants infected with a CarO-deficient F. fujikuroi strain showed more severe bakanae symptoms than the reference strain, indicating a potential role of the CarO rhodopsin in the regulation of plant infection by this fungus.}, language = {en} } @article{BrunkSputhDooseetal.2018, author = {Brunk, Michael and Sputh, Sebastian and Doose, S{\"o}ren and van de Linde, Sebastian and Terpitz, Ulrich}, title = {HyphaTracker: An ImageJ toolbox for time-resolved analysis of spore germination in filamentous fungi}, series = {Scientific Reports}, volume = {8}, journal = {Scientific Reports}, doi = {10.1038/s41598-017-19103-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-221691}, year = {2018}, abstract = {The dynamics of early fungal development and its interference with physiological signals and environmental factors is yet poorly understood. Especially computational analysis tools for the evaluation of the process of early spore germination and germ tube formation are still lacking. For the time-resolved analysis of conidia germination of the filamentous ascomycete Fusarium fujikuroi we developed a straightforward toolbox implemented in ImageJ. It allows for processing of microscopic acquisitions (movies) of conidial germination starting with drift correction and data reduction prior to germling analysis. From the image time series germling related region of interests (ROIs) are extracted, which are analysed for their area, circularity, and timing. ROIs originating from germlings crossing other hyphae or the image boundaries are omitted during analysis. Each conidium/hypha is identified and related to its origin, thus allowing subsequent categorization. The efficiency of HyphaTracker was proofed and the accuracy was tested on simulated germlings at different signal-to-noise ratios. Bright-field microscopic images of conidial germination of rhodopsin-deficient F. fujikuroi mutants and their respective control strains were analysed with HyphaTracker. Consistent with our observation in earlier studies the CarO deficient mutant germinated earlier and grew faster than other, CarO expressing strains.}, language = {en} } @article{FeldbauerSchlegelWeissbeckeretal.2016, author = {Feldbauer, Katrin and Schlegel, Jan and Weissbecker, Juliane and Sauer, Frank and Wood, Phillip G. and Bamberg, Ernst and Terpitz, Ulrich}, title = {Optochemokine Tandem for Light-Control of Intracellular Ca\(^{2+}\)}, series = {PLoS ONE}, volume = {11}, journal = {PLoS ONE}, number = {10}, doi = {10.1371/journal.pone.0165344}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-178921}, year = {2016}, abstract = {An optochemokine tandem was developed to control the release of calcium from endosomes into the cytosol by light and to analyze the internalization kinetics of G-protein coupled receptors (GPCRs) by electrophysiology. A previously constructed rhodopsin tandem was re-engineered to combine the light-gated Ca\(^{2+}\)-permeable cation channel Channelrhodopsin-2(L132C), CatCh, with the chemokine receptor CXCR4 in a functional tandem protein tCXCR4/CatCh. The GPCR was used as a shuttle protein to displace CatCh from the plasma membrane into intracellular areas. As shown by patch-clamp measurements and confocal laser scanning microscopy, heterologously expressed tCXCR4/CatCh was internalized via the endocytic SDF1/CXCR4 signaling pathway. The kinetics of internalization could be followed electrophysiologically via the amplitude of the CatCh signal. The light-induced release of Ca\(^{2+}\) by tandem endosomes into the cytosol via CatCh was visualized using the Ca\(^{2+}\)-sensitive dyes rhod2 and rhod2-AM showing an increase of intracellular Ca\(^{2+}\) in response to light.}, language = {en} } @article{GarciaMartinezBrunkAvalosetal.2015, author = {Garc{\´i}a-Mart{\´i}nez, Jorge and Brunk, Michael and Avalos, Javier and Terpitz, Ulrich}, title = {The CarO rhodopsin of the fungus Fusarium fujikuroi is a light-driven proton pump that retards spore germination}, series = {Scientific Reports}, volume = {5}, journal = {Scientific Reports}, number = {7798}, doi = {10.1038/srep07798}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-149049}, year = {2015}, abstract = {Rhodopsins are membrane-embedded photoreceptors found in all major taxonomic kingdoms using retinal as their chromophore. They play well-known functions in different biological systems, but their roles in fungi remain unknown. The filamentous fungus Fusarium fujikuroi contains two putative rhodopsins, CarO and OpsA. The gene carO is light-regulated, and the predicted polypeptide contains all conserved residues required for proton pumping. We aimed to elucidate the expression and cellular location of the fungal rhodopsin CarO, its presumed proton-pumping activity and the possible effect of such function on F. fujikuroi growth. In electrophysiology experiments we confirmed that CarO is a green-light driven proton pump. Visualization of fluorescent CarO-YFP expressed in F. fujikuroi under control of its native promoter revealed higher accumulation in spores (conidia) produced by light-exposed mycelia. Germination analyses of conidia from carO\(^{-}\) mutant and carO\(^{+}\) control strains showed a faster development of light-exposed carO-germlings. In conclusion, CarO is an active proton pump, abundant in light-formed conidia, whose activity slows down early hyphal development under light. Interestingly, CarO-related rhodopsins are typically found in plant-associated fungi, where green light dominates the phyllosphere. Our data provide the first reliable clue on a possible biological role of a fungal rhodopsin.}, language = {en} } @article{GoetzPanzerTrinksetal.2020, author = {G{\"o}tz, Ralph and Panzer, Sabine and Trinks, Nora and Eilts, Janna and Wagener, Johannes and Turr{\`a}, David and Di Pietro, Antonio and Sauer, Markus and Terpitz, Ulrich}, title = {Expansion Microscopy for Cell Biology Analysis in Fungi}, series = {Frontiers in Microbiology}, volume = {11}, journal = {Frontiers in Microbiology}, issn = {1664-302X}, doi = {10.3389/fmicb.2020.00574}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-202569}, year = {2020}, abstract = {Super-resolution microscopy has evolved as a powerful method for subdiffraction-resolution fluorescence imaging of cells and cellular organelles, but requires sophisticated and expensive installations. Expansion microscopy (ExM), which is based on the physical expansion of the cellular structure of interest, provides a cheap alternative to bypass the diffraction limit and enable super-resolution imaging on a conventional fluorescence microscope. While ExM has shown impressive results for the magnified visualization of proteins and RNAs in cells and tissues, it has not yet been applied in fungi, mainly due to their complex cell wall. Here we developed a method that enables reliable isotropic expansion of ascomycetes and basidiomycetes upon treatment with cell wall degrading enzymes. Confocal laser scanning microscopy (CLSM) and structured illumination microscopy (SIM) images of 4.5-fold expanded sporidia of Ustilago maydis expressing fluorescent fungal rhodopsins and hyphae of Fusarium oxysporum or Aspergillus fumigatus expressing either histone H1-mCherry together with Lifeact-sGFP or mRFP targeted to mitochondria, revealed details of subcellular structures with an estimated spatial resolution of around 30 nm. ExM is thus well suited for cell biology studies in fungi on conventional fluorescence microscopes.}, language = {en} } @article{KonteTerpitzPlemenitaš2016, author = {Konte, Tilen and Terpitz, Ulrich and Plemenitaš, Ana}, title = {Reconstruction of the High-Osmolarity Glycerol (HOG) Signaling Pathway from the Halophilic Fungus Wallemia ichthyophaga in Saccharomyces cerevisiae}, series = {Frontiers in Microbiology}, journal = {Frontiers in Microbiology}, doi = {10.3389/fmicb.2016.00901}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-165214}, year = {2016}, abstract = {The basidiomycetous fungus Wallemia ichthyophaga grows between 1.7 and 5.1 M NaCl and is the most halophilic eukaryote described to date. Like other fungi, W. ichthyophaga detects changes in environmental salinity mainly by the evolutionarily conserved high-osmolarity glycerol (HOG) signaling pathway. In Saccharomyces cerevisiae, the HOG pathway has been extensively studied in connection to osmotic regulation, with a valuable knock-out strain collection established. In the present study, we reconstructed the architecture of the HOG pathway of W. ichthyophaga in suitable S. cerevisiae knock-out strains, through heterologous expression of the W. ichthyophaga HOG pathway proteins. Compared to S. cerevisiae, where the Pbs2 (ScPbs2) kinase of the HOG pathway is activated via the SHO1 and SLN1 branches, the interactions between the W. ichthyophaga Pbs2 (WiPbs2) kinase and the W. ichthyophaga SHO1 branch orthologs are not conserved: as well as evidence of poor interactions between the WiSho1 Src-homology 3 (SH3) domain and the WiPbs2 proline-rich motif, the absence of a considerable part of the osmosensing apparatus in the genome of W. ichthyophaga suggests that the SHO1 branch components are not involved in HOG signaling in this halophilic fungus. In contrast, the conserved activation of WiPbs2 by the S. cerevisiae ScSsk2/ScSsk22 kinase and the sensitivity of W. ichthyophaga cells to fludioxonil, emphasize the significance of two-component (SLN1-like) signaling via Group III histidine kinase. Combined with protein modeling data, our study reveals conserved and non-conserved protein interactions in the HOG signaling pathway of W. ichthyophaga and therefore significantly improves the knowledge of hyperosmotic signal processing in this halophilic fungus.}, language = {en} } @article{LuDreyerDickinsonetal.2023, author = {Lu, Jinping and Dreyer, Ingo and Dickinson, Miles Sasha and Panzer, Sabine and Jaślan, Dawid and Navarro-Retamal, Carlos and Geiger, Dietmar and Terpitz, Ulrich and Becker, Dirk and Stroud, Robert M. and Marten, Irene and Hedrich, Rainer}, title = {Vicia faba SV channel VfTPC1 is a hyperexcitable variant of plant vacuole two pore channels}, series = {eLife}, volume = {12}, journal = {eLife}, doi = {10.7554/eLife.86384}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-350264}, year = {2023}, abstract = {To fire action-potential-like electrical signals, the vacuole membrane requires the two-pore channel TPC1, formerly called SV channel. The TPC1/SV channel functions as a depolarization-stimulated, non-selective cation channel that is inhibited by luminal Ca\(^{2+}\). In our search for species-dependent functional TPC1 channel variants with different luminal Ca\(^{2+}\) sensitivity, we found in total three acidic residues present in Ca\(^{2+}\) sensor sites 2 and 3 of the Ca\(^{2+}\)-sensitive AtTPC1 channel from Arabidopsis thaliana that were neutral in its Vicia faba ortholog and also in those of many other Fabaceae. When expressed in the Arabidopsis AtTPC1-loss-of-function background, wild-type VfTPC1 was hypersensitive to vacuole depolarization and only weakly sensitive to blocking luminal Ca\(^{2+}\). When AtTPC1 was mutated for these VfTPC1-homologous polymorphic residues, two neutral substitutions in Ca\(^{2+}\) sensor site 3 alone were already sufficient for the Arabidopsis At-VfTPC1 channel mutant to gain VfTPC1-like voltage and luminal Ca\(^{2+}\) sensitivity that together rendered vacuoles hyperexcitable. Thus, natural TPC1 channel variants exist in plant families which may fine-tune vacuole excitability and adapt it to environmental settings of the particular ecological niche.}, language = {en} } @article{PanzerBrychBatschaueretal.2019, author = {Panzer, Sabine and Brych, Annika and Batschauer, Alfred and Terpitz, Ulrich}, title = {Opsin 1 and Opsin 2 of the corn smut fungus ustilago maydis are green light-driven proton pumps}, series = {Frontiers in Microbiology}, volume = {10}, journal = {Frontiers in Microbiology}, doi = {10.3389/fmicb.2019.00735}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201453}, pages = {735}, year = {2019}, abstract = {In fungi, green light is absorbed by rhodopsins, opsin proteins carrying a retinal molecule as chromophore. The basidiomycete Ustilago maydis, a fungal pathogen that infects corn plants, encodes three putative photoactive opsins, called ops1 (UMAG_02629), ops2 (UMAG_00371), and ops3 (UMAG_04125). UmOps1 and UmOps2 are expressed during the whole life cycle, in axenic cultures as well as in planta, whereas UmOps3 was recently shown to be absent in axenic cultures but highly expressed during plant infection. Here we show that expression of UmOps1 and UmOps2 is induced by blue light under control of white collar 1 (Wco1). UmOps1 is mainly localized in the plasma membrane, both when expressed in HEK cells and U. maydis sporidia. In contrast, UmOps2 was mostly found intracellularly in the membranes of vacuoles. Patch-clamp studies demonstrated that both rhodopsins are green light-driven outward rectifying proton pumps. UmOps1 revealed an extraordinary pH dependency with increased activity in more acidic environment. Also, UmOps1 showed a pronounced, concentration-dependent enhancement of pump current caused by weak organic acids (WOAs), especially by acetic acid and indole-3-acetic acid (IAA). In contrast, UmOps2 showed the typical behavior of light-driven, outwardly directed proton pumps, whereas UmOps3 did not exhibit any electrogenity. With this work, insights were gained into the localization and molecular function of two U. maydis rhodopsins, paving the way for further studies on the biological role of these rhodopsins in the life cycle of U. maydis.}, language = {en} } @article{PanzerZhangKonteetal.2021, author = {Panzer, Sabine and Zhang, Chong and Konte, Tilen and Br{\"a}uer, Celine and Diemar, Anne and Yogendran, Parathy and Yu-Strzelczyk, Jing and Nagel, Georg and Gao, Shiqiang and Terpitz, Ulrich}, title = {Modified Rhodopsins From Aureobasidium pullulans Excel With Very High Proton-Transport Rates}, series = {Frontiers in Molecular Biosciences}, volume = {8}, journal = {Frontiers in Molecular Biosciences}, issn = {2296-889X}, doi = {10.3389/fmolb.2021.750528}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-249248}, year = {2021}, abstract = {Aureobasidium pullulans is a black fungus that can adapt to various stressful conditions like hypersaline, acidic, and alkaline environments. The genome of A. pullulans exhibits three genes coding for putative opsins ApOps1, ApOps2, and ApOps3. We heterologously expressed these genes in mammalian cells and Xenopus oocytes. Localization in the plasma membrane was greatly improved by introducing additional membrane trafficking signals at the N-terminus and the C-terminus. In patch-clamp and two-electrode-voltage clamp experiments, all three proteins showed proton pump activity with maximal activity in green light. Among them, ApOps2 exhibited the most pronounced proton pump activity with current amplitudes occasionally extending 10 pA/pF at 0 mV. Proton pump activity was further supported in the presence of extracellular weak organic acids. Furthermore, we used site-directed mutagenesis to reshape protein functions and thereby implemented light-gated proton channels. We discuss the difference to other well-known proton pumps and the potential of these rhodopsins for optogenetic applications.}, language = {en} } @article{SputhPanzerStigloheretal.2021, author = {Sputh, Sebastian and Panzer, Sabine and Stigloher, Christian and Terpitz, Ulrich}, title = {Superaufgel{\"o}ste Mikroskopie: Pilze unter Beobachtung}, series = {BIOspektrum}, volume = {27}, journal = {BIOspektrum}, number = {4}, issn = {1868-6249}, doi = {10.1007/s12268-021-1592-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-270014}, pages = {380-382}, year = {2021}, abstract = {The diffraction limit of light confines fluorescence imaging of subcellular structures in fungi. Different super-resolution methods are available for the analysis of fungi that we briefly discuss. We exploit the filamentous fungus Fusarium fujikuroi expressing a YFP-labeled membrane protein showing the benefit of correlative light- and electron microscopy (CLEM), that combines structured illumination microscopy (SIM) and scanning election microscopy (SEM).}, language = {de} }