@article{GrobHeinigGruebeletal.2021, author = {Grob, Robin and Heinig, Niklas and Gr{\"u}bel, Kornelia and R{\"o}ssler, Wolfgang and Fleischmann, Pauline N.}, title = {Sex-specific and caste-specific brain adaptations related to spatial orientation in Cataglyphis ants}, series = {Journal of Comparative Neurology}, volume = {529}, journal = {Journal of Comparative Neurology}, number = {18}, doi = {10.1002/cne.25221}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-257299}, pages = {3882-3892}, year = {2021}, abstract = {Cataglyphis desert ants are charismatic central place foragers. After long-ranging foraging trips, individual workers navigate back to their nest relying mostly on visual cues. The reproductive caste faces other orientation challenges, i.e. mate finding and colony foundation. Here we compare brain structures involved in spatial orientation of Cataglyphis nodus males, gynes, and foragers by quantifying relative neuropil volumes associated with two visual pathways, and numbers and volumes of antennal lobe (AL) olfactory glomeruli. Furthermore, we determined absolute numbers of synaptic complexes in visual and olfactory regions of the mushroom bodies (MB) and a major relay station of the sky-compass pathway to the central complex (CX). Both female castes possess enlarged brain centers for sensory integration, learning, and memory, reflected in voluminous MBs containing about twice the numbers of synaptic complexes compared with males. Overall, male brains are smaller compared with both female castes, but the relative volumes of the optic lobes and CX are enlarged indicating the importance of visual guidance during innate behaviors. Male ALs contain greatly enlarged glomeruli, presumably involved in sex-pheromone detection. Adaptations at both the neuropil and synaptic levels clearly reflect differences in sex-specific and caste-specific demands for sensory processing and behavioral plasticity underlying spatial orientation.}, language = {en} } @article{FalibeneRocesRoessler2015, author = {Falibene, Augustina and Roces, Flavio and R{\"o}ssler, Wolfgang}, title = {Long-term avoidance memory formation is associated with a transient increase in mushroom body synaptic complexes in leaf-cutting ants}, series = {Frontiers in Behavioural Neuroscience}, volume = {9}, journal = {Frontiers in Behavioural Neuroscience}, number = {84}, doi = {10.3389/fnbeh.2015.00084}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148763}, year = {2015}, abstract = {Long-term behavioral changes related to learning and experience have been shown to be associated with structural remodeling in the brain. Leaf-cutting ants learn to avoid previously preferred plants after they have proved harmful for their symbiotic fungus, a process that involves long-term olfactory memory. We studied the dynamics of brain microarchitectural changes after long-term olfactory memory formation following avoidance learning in Acromyrmex ambiguus. After performing experiments to control for possible neuronal changes related to age and body size, we quantified synaptic complexes (microglomeruli, MG) in olfactory regions of the mushroom bodies (MB) at different times after learning. Long-term avoidance memory formation was associated with a transient change in MG densities. Two days after learning, MG density was higher than before learning. At days 4 and 15 after learning when ants still showed plant avoidance MG densities had decreased to the initial state. The structural reorganization of MG triggered by long-term avoidance memory formation clearly differed from changes promoted by pure exposure to and collection of novel plants with distinct odors. Sensory exposure by the simultaneous collection of several, instead of one, non-harmful plant species resulted in a decrease in MG densities in the olfactory lip. We hypothesize that while sensory exposure leads to MG pruning in the MB olfactory lip, the formation of long-term avoidance memory involves an initial growth of new MG followed by subsequent pruning.}, language = {en} } @article{FalibeneRocesRoessler2015, author = {Falibene, Agustina and Roces, Flavio and R{\"o}ssler, Wolfgang}, title = {Long-term avoidance memory formation is associated with a transient increase in mushroom body synaptic complexes in leaf-cutting ants}, series = {Frontiers in Behavioral Neuroscience}, volume = {9}, journal = {Frontiers in Behavioral Neuroscience}, number = {84}, doi = {10.3389/fnbeh.2015.00084}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-125522}, year = {2015}, abstract = {Long-term behavioral changes related to learning and experience have been shown to be associated with structural remodeling in the brain. Leaf-cutting ants learn to avoid previously preferred plants after they have proved harmful for their symbiotic fungus, a process that involves long-term olfactory memory. We studied the dynamics of brain microarchitectural changes after long-term olfactory memory formation following avoidance learning in Acromyrmex ambiguus. After performing experiments to control for possible neuronal changes related to age and body size, we quantified synaptic complexes (microglomeruli, MG) in olfactory regions of the mushroom bodies (MBs) at different times after learning. Long-term avoidance memory formation was associated with a transient change in MG densities. Two days after learning, MG density was higher than before learning. At days 4 and 15 after learning—when ants still showed plant avoidance—MG densities had decreased to the initial state. The structural reorganization of MG triggered by long-term avoidance memory formation clearly differed from changes promoted by pure exposure to and collection of novel plants with distinct odors. Sensory exposure by the simultaneous collection of several, instead of one, non-harmful plant species resulted in a decrease in MG densities in the olfactory lip. We hypothesize that while sensory exposure leads to MG pruning in the MB olfactory lip, the formation of long-term avoidance memory involves an initial growth of new MG followed by subsequent pruning.}, language = {en} }