@article{ZieglerMeyerOtteetal.2022, author = {Ziegler, Alice and Meyer, Hanna and Otte, Insa and Peters, Marcell K. and Appelhans, Tim and Behler, Christina and B{\"o}hning-Gaese, Katrin and Classen, Alice and Detsch, Florian and Deckert, J{\"u}rgen and Eardley, Connal D. and Ferger, Stefan W. and Fischer, Markus and Gebert, Friederike and Haas, Michael and Helbig-Bonitz, Maria and Hemp, Andreas and Hemp, Claudia and Kakengi, Victor and Mayr, Antonia V. and Ngereza, Christine and Reudenbach, Christoph and R{\"o}der, Juliane and Rutten, Gemma and Schellenberger Costa, David and Schleuning, Matthias and Ssymank, Axel and Steffan-Dewenter, Ingolf and Tardanico, Joseph and Tschapka, Marco and Vollst{\"a}dt, Maximilian G. R. and W{\"o}llauer, Stephan and Zhang, Jie and Brandl, Roland and Nauss, Thomas}, title = {Potential of airborne LiDAR derived vegetation structure for the prediction of animal species richness at Mount Kilimanjaro}, series = {Remote Sensing}, volume = {14}, journal = {Remote Sensing}, number = {3}, issn = {2072-4292}, doi = {10.3390/rs14030786}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-262251}, year = {2022}, abstract = {The monitoring of species and functional diversity is of increasing relevance for the development of strategies for the conservation and management of biodiversity. Therefore, reliable estimates of the performance of monitoring techniques across taxa become important. Using a unique dataset, this study investigates the potential of airborne LiDAR-derived variables characterizing vegetation structure as predictors for animal species richness at the southern slopes of Mount Kilimanjaro. To disentangle the structural LiDAR information from co-factors related to elevational vegetation zones, LiDAR-based models were compared to the predictive power of elevation models. 17 taxa and 4 feeding guilds were modeled and the standardized study design allowed for a comparison across the assemblages. Results show that most taxa (14) and feeding guilds (3) can be predicted best by elevation with normalized RMSE values but only for three of those taxa and two of those feeding guilds the difference to other models is significant. Generally, modeling performances between different models vary only slightly for each assemblage. For the remaining, structural information at most showed little additional contribution to the performance. In summary, LiDAR observations can be used for animal species prediction. However, the effort and cost of aerial surveys are not always in proportion with the prediction quality, especially when the species distribution follows zonal patterns, and elevation information yields similar results.}, language = {en} } @article{VoulgariKokotaSteffanDewenterKeller2020, author = {Voulgari-Kokota, Anna and Steffan-Dewenter, Ingolf and Keller, Alexander}, title = {Susceptibility of Red Mason Bee Larvae to Bacterial Threats Due to Microbiome Exchange with Imported Pollen Provisions}, series = {Insects}, volume = {11}, journal = {Insects}, number = {6}, issn = {2075-4450}, doi = {10.3390/insects11060373}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-207948}, year = {2020}, abstract = {Solitary bees are subject to a variety of pressures that cause severe population declines. Currently, habitat loss, temperature shifts, agrochemical exposure, and new parasites are identified as major threats. However, knowledge about detrimental bacteria is scarce, although they may disturb natural microbiomes, disturb nest environments, or harm the larvae directly. To address this gap, we investigated 12 Osmia bicornis nests with deceased larvae and 31 nests with healthy larvae from the same localities in a 16S ribosomal RNA (rRNA) gene metabarcoding study. We sampled larvae, pollen provisions, and nest material and then contrasted bacterial community composition and diversity in healthy and deceased nests. Microbiomes of pollen provisions and larvae showed similarities for healthy larvae, whilst this was not the case for deceased individuals. We identified three bacterial taxa assigned to Paenibacillus sp. (closely related to P. pabuli/amylolyticus/xylanexedens), Sporosarcina sp., and Bacillus sp. as indicative for bacterial communities of deceased larvae, as well as Lactobacillus for corresponding pollen provisions. Furthermore, we performed a provisioning experiment, where we fed larvae with untreated and sterilized pollens, as well as sterilized pollens inoculated with a Bacillus sp. isolate from a deceased larva. Untreated larval microbiomes were consistent with that of the pollen provided. Sterilized pollen alone did not lead to acute mortality, while no microbiome was recoverable from the larvae. In the inoculation treatment, we observed that larval microbiomes were dominated by the seeded bacterium, which resulted in enhanced mortality. These results support that larval microbiomes are strongly determined by the pollen provisions. Further, they underline the need for further investigation of the impact of detrimental bacterial acquired via pollens and potential buffering by a diverse pollen provision microbiome in solitary bees.}, language = {en} } @article{VogelChungaSunetal.2021, author = {Vogel, Cassandra and Chunga, Timothy L. and Sun, Xiaoxuan and Poveda, Katja and Steffan-Dewenter, Ingolf}, title = {Higher bee abundance, but not pest abundance, in landscapes with more agriculture on a late-flowering legume crop in tropical smallholder farms}, series = {PeerJ}, volume = {9}, journal = {PeerJ}, doi = {10.7717/peerj.10732}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-231491}, year = {2021}, abstract = {Background Landscape composition is known to affect both beneficial insect and pest communities on crop fields. Landscape composition therefore can impact ecosystem (dis)services provided by insects to crops. Though landscape effects on ecosystem service providers have been studied in large-scale agriculture in temperate regions, there is a lack of representation of tropical smallholder agriculture within this field of study, especially in sub-Sahara Africa. Legume crops can provide important food security and soil improvement benefits to vulnerable agriculturalists. However, legumes are dependent on pollinating insects, particularly bees (Hymenoptera: Apiformes) for production and are vulnerable to pests. We selected 10 pigeon pea (Fabaceae: Cajunus cajan (L.)) fields in Malawi with varying proportions of semi-natural habitat and agricultural area within a 1 km radius to study: (1) how the proportion of semi-natural habitat and agricultural area affects the abundance and richness of bees and abundance of florivorous blister beetles (Coleoptera: Melloidae), (2) if the proportion of flowers damaged and fruit set difference between open and bagged flowers are correlated with the proportion of semi-natural habitat or agricultural area and (3) if pigeon pea fruit set difference between open and bagged flowers in these landscapes was constrained by pest damage or improved by bee visitation. Methods We performed three, ten-minute, 15 m, transects per field to assess blister beetle abundance and bee abundance and richness. Bees were captured and identified to (morpho)species. We assessed the proportion of flowers damaged by beetles during the flowering period. We performed a pollinator and pest exclusion experiment on 15 plants per field to assess whether fruit set was pollinator limited or constrained by pests. Results In our study, bee abundance was higher in areas with proportionally more agricultural area surrounding the fields. This effect was mostly driven by an increase in honeybees. Bee richness and beetle abundances were not affected by landscape characteristics, nor was flower damage or fruit set difference between bagged and open flowers. We did not observe a positive effect of bee density or richness, nor a negative effect of florivory, on fruit set difference. Discussion In our study area, pigeon pea flowers relatively late—well into the dry season. This could explain why we observe higher densities of bees in areas dominated by agriculture rather than in areas with more semi-natural habitat where resources for bees during this time of the year are scarce. Therefore, late flowering legumes may be an important food resource for bees during a period of scarcity in the seasonal tropics. The differences in patterns between our study and those conducted in temperate regions highlight the need for landscape-scale studies in areas outside the temperate region.}, language = {en} } @article{VansynghelOcampoArizaMaasetal.2022, author = {Vansynghel, Justine and Ocampo-Ariza, Carolina and Maas, Bea and Martin, Emily A. and Thomas, Evert and Hanf-Dressler, Tara and Schumacher, Nils-Christian and Ulloque-Samatelo, Carlos and Tscharntke, Teja and Steffan-Dewenter, Ingolf}, title = {Cacao flower visitation: Low pollen deposition, low fruit set and dominance of herbivores}, series = {Ecological Solutions and Evidence}, volume = {3}, journal = {Ecological Solutions and Evidence}, number = {2}, issn = {2688-8319}, doi = {10.1002/2688-8319.12140}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-312722}, year = {2022}, abstract = {1. Pollination services of cacao are crucial for global chocolate production, yet remain critically understudied, particularly in regions of origin of the species. Notably, uncertainties remain concerning the identity of cacao pollinators, the influence of landscape (forest distance) and management (shade cover) on flower visitation and the role of pollen deposition in limiting fruit set. 2. Here, we aimed to improve understanding of cacao pollination by studying limiting factors of fruit set in Peru, part of the centre of origin of cacao. Flower visitors were sampled with sticky insect glue in 20 cacao agroforests in two biogeographically distinct regions of Peru, across gradients of shade cover and forest distance. Further, we assessed pollen quantities and compared fruit set between naturally and manually pollinated flowers. 3. The most abundant flower visitors were aphids, ants and thrips in the north and thrips, midges and parasitoid wasps in the south of Peru. We present some evidence of increasing visitation rates from medium to high shade (40\%-95\% canopy closure) in the dry north, and opposite patterns in the semi-humid south, during the wet season. 4. Natural pollination resulted in remarkably low fruit set rates (2\%), and very low pollen deposition. After hand pollination, fruit set more than tripled (7\%), but was still low. 5. The diversity and high relative abundances of herbivore flower visitors limit our ability to draw conclusions on the functional role of different flower visitors. The remarkably low fruit set of naturally and even hand pollinated flowers indicates that other unaddressed factors limit cacao fruit production. Such factors could be, amongst others, a lack of effective pollinators, genetic incompatibility or resource limitation. Revealing efficient pollinator species and other causes of low fruit set rates is therefore key to establish location-specific management strategies and develop high yielding native cacao agroforestry systems in regions of origin of cacao}, language = {en} } @article{UhlerRedlichZhangetal.2021, author = {Uhler, Johannes and Redlich, Sarah and Zhang, Jie and Hothorn, Torsten and Tobisch, Cynthia and Ewald, J{\"o}rg and Thorn, Simon and Seibold, Sebastian and Mitesser, Oliver and Morin{\`e}re, J{\´e}r{\^o}me and Bozicevic, Vedran and Benjamin, Caryl S. and Englmeier, Jana and Fricke, Ute and Ganuza, Cristina and Haensel, Maria and Riebl, Rebekka and Rojas-Botero, Sandra and Rummler, Thomas and Uphus, Lars and Schmidt, Stefan and Steffan-Dewenter, Ingolf and M{\"u}ller, J{\"o}rg}, title = {Relationships of insect biomass and richness with land use along a climate gradient}, series = {Nature Communications}, volume = {12}, journal = {Nature Communications}, number = {1}, doi = {10.1038/s41467-021-26181-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-265058}, year = {2021}, abstract = {Recently reported insect declines have raised both political and social concern. Although the declines have been attributed to land use and climate change, supporting evidence suffers from low taxonomic resolution, short time series, a focus on local scales, and the collinearity of the identified drivers. In this study, we conducted a systematic assessment of insect populations in southern Germany, which showed that differences in insect biomass and richness are highly context dependent. We found the largest difference in biomass between semi-natural and urban environments (-42\%), whereas differences in total richness (-29\%) and the richness of threatened species (-56\%) were largest from semi-natural to agricultural environments. These results point to urbanization and agriculture as major drivers of decline. We also found that richness and biomass increase monotonously with increasing temperature, independent of habitat. The contrasting patterns of insect biomass and richness question the use of these indicators as mutual surrogates. Our study provides support for the implementation of more comprehensive measures aimed at habitat restoration in order to halt insect declines.}, language = {en} } @article{SteijvenSpaetheSteffanDewenteretal.2017, author = {Steijven, Karin and Spaethe, Johannes and Steffan-Dewenter, Ingolf and H{\"a}rtel, Stephan}, title = {Learning performance and brain structure of artificially-reared honey bees fed with different quantities of food}, series = {PeerJ}, volume = {5}, journal = {PeerJ}, number = {e3858}, doi = {10.7717/peerj.3858}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170137}, year = {2017}, abstract = {Background Artificial rearing of honey bee larvae is an established method which enables to fully standardize the rearing environment and to manipulate the supplied diet to the brood. However, there are no studies which compare learning performance or neuroanatomic differences of artificially-reared (in-lab) bees in comparison with their in-hive reared counterparts. Methods Here we tested how different quantities of food during larval development affect body size, brain morphology and learning ability of adult honey bees. We used in-lab rearing to be able to manipulate the total quantity of food consumed during larval development. After hatching, a subset of the bees was taken for which we made 3D reconstructions of the brains using confocal laser-scanning microscopy. Learning ability and memory formation of the remaining bees was tested in a differential olfactory conditioning experiment. Finally, we evaluated how bees reared with different quantities of artificial diet compared to in-hive reared bees. Results Thorax and head size of in-lab reared honey bees, when fed the standard diet of 160 µl or less, were slightly smaller than hive bees. The brain structure analyses showed that artificially reared bees had smaller mushroom body (MB) lateral calyces than their in-hive counterparts, independently of the quantity of food they received. However, they showed the same total brain size and the same associative learning ability as in-hive reared bees. In terms of mid-term memory, but not early long-term memory, they performed even better than the in-hive control. Discussion We have demonstrated that bees that are reared artificially (according to the Aupinel protocol) and kept in lab-conditions perform the same or even better than their in-hive sisters in an olfactory conditioning experiment even though their lateral calyces were consistently smaller at emergence. The applied combination of experimental manipulation during the larval phase plus subsequent behavioral and neuro-anatomic analyses is a powerful tool for basic and applied honey bee research.}, language = {en} } @article{SponslerKallnikRequieretal.2022, author = {Sponsler, Douglas and Kallnik, Katharina and Requier, Fabrice and Classen, Alice and Maihoff, A. Fabienne and Sieger, Johanna and Steffan-Dewenter, Ingolf}, title = {Floral preferences of mountain bumble bees are constrained by functional traits but flexible through elevation and season}, series = {Oikos}, volume = {2022}, journal = {Oikos}, number = {3}, doi = {10.1111/oik.08902}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259653}, year = {2022}, abstract = {Patterns of resource use by animals can clarify how ecological communities have assembled in the past, how they currently function and how they are likely to respond to future perturbations. Bumble bees (Hymentoptera: Bombus spp.) and their floral hosts provide a diverse yet tractable system in which to explore resource selection in the context of plant-pollinator networks. Under conditions of resource limitation, the ability of bumble bees species to coexist should depend on dietary niche overlap. In this study, we report patterns and dynamics of floral morphotype preferences in a mountain bumble bee community based on ~13 000 observations of bumble bee floral visits recorded along a 1400 m elevation gradient. We found that bumble bees are highly selective generalists, rarely visiting floral morphotypes at the rates predicted by their relative abundances. Preferences also differed markedly across bumble bee species, and these differences were well-explained by variation in bumble bee tongue length, generating patterns of preference similarity that should be expected to predict competition under conditions of resource limitation. Within species, though, morphotype preferences varied by elevation and season, possibly representing adaptive flexibility in response to the high elevational and seasonal turnover of mountain floral communities. Patterns of resource partitioning among bumble bee communities may determine which species can coexist under the altered distributions of bumble bees and their floral hosts caused by climate and land use change.}, language = {en} } @article{SickelAnkenbrandGrimmeretal.2015, author = {Sickel, Wiebke and Ankenbrand, Markus J. and Grimmer, Gudrun and Holzschuh, Andrea and H{\"a}rtel, Stephan and Lanzen, Jonathan and Steffan-Dewenter, Ingolf and Keller, Alexander}, title = {Increased efficiency in identifying mixed pollen samples by meta-barcoding with a dual-indexing approach}, series = {BMC Ecology}, volume = {15}, journal = {BMC Ecology}, number = {20}, doi = {10.1186/s12898-015-0051-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-125730}, year = {2015}, abstract = {Background Meta-barcoding of mixed pollen samples constitutes a suitable alternative to conventional pollen identification via light microscopy. Current approaches however have limitations in practicability due to low sample throughput and/or inefficient processing methods, e.g. separate steps for amplification and sample indexing. Results We thus developed a new primer-adapter design for high throughput sequencing with the Illumina technology that remedies these issues. It uses a dual-indexing strategy, where sample-specific combinations of forward and reverse identifiers attached to the barcode marker allow high sample throughput with a single sequencing run. It does not require further adapter ligation steps after amplification. We applied this protocol to 384 pollen samples collected by solitary bees and sequenced all samples together on a single Illumina MiSeq v2 flow cell. According to rarefaction curves, 2,000-3,000 high quality reads per sample were sufficient to assess the complete diversity of 95\% of the samples. We were able to detect 650 different plant taxa in total, of which 95\% were classified at the species level. Together with the laboratory protocol, we also present an update of the reference database used by the classifier software, which increases the total number of covered global plant species included in the database from 37,403 to 72,325 (93\% increase). Conclusions This study thus offers improvements for the laboratory and bioinformatical workflow to existing approaches regarding data quantity and quality as well as processing effort and cost-effectiveness. Although only tested for pollen samples, it is furthermore applicable to other research questions requiring plant identification in mixed and challenging samples.}, language = {en} } @article{SchilcherHilsmannRauscheretal.2021, author = {Schilcher, Felix and Hilsmann, Lioba and Rauscher, Lisa and Değirmenci, Laura and Krischke, Markus and Krischke, Beate and Ankenbrand, Markus and Rutschmann, Benjamin and Mueller, Martin J. and Steffan-Dewenter, Ingolf and Scheiner, Ricarda}, title = {In vitro rearing changes social task performance and physiology in honeybees}, series = {Insects}, volume = {13}, journal = {Insects}, number = {1}, issn = {2075-4450}, doi = {10.3390/insects13010004}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-252305}, year = {2021}, abstract = {In vitro rearing of honeybee larvae is an established method that enables exact control and monitoring of developmental factors and allows controlled application of pesticides or pathogens. However, only a few studies have investigated how the rearing method itself affects the behavior of the resulting adult honeybees. We raised honeybees in vitro according to a standardized protocol: marking the emerging honeybees individually and inserting them into established colonies. Subsequently, we investigated the behavioral performance of nurse bees and foragers and quantified the physiological factors underlying the social organization. Adult honeybees raised in vitro differed from naturally reared honeybees in their probability of performing social tasks. Further, in vitro-reared bees foraged for a shorter duration in their life and performed fewer foraging trips. Nursing behavior appeared to be unaffected by rearing condition. Weight was also unaffected by rearing condition. Interestingly, juvenile hormone titers, which normally increase strongly around the time when a honeybee becomes a forager, were significantly lower in three- and four-week-old in vitro bees. The effects of the rearing environment on individual sucrose responsiveness and lipid levels were rather minor. These data suggest that larval rearing conditions can affect the task performance and physiology of adult bees despite equal weight, pointing to an important role of the colony environment for these factors. Our observations of behavior and metabolic pathways offer important novel insight into how the rearing environment affects adult honeybees.}, language = {en} } @article{SchilcherHilsmannAnkenbrandetal.2022, author = {Schilcher, Felix and Hilsmann, Lioba and Ankenbrand, Markus J. and Krischke, Markus and Mueller, Martin J. and Steffan-Dewenter, Ingolf and Scheiner, Ricarda}, title = {Honeybees are buffered against undernourishment during larval stages}, series = {Frontiers in Insect Science}, volume = {2}, journal = {Frontiers in Insect Science}, issn = {2673-8600}, doi = {10.3389/finsc.2022.951317}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-304646}, year = {2022}, abstract = {The negative impact of juvenile undernourishment on adult behavior has been well reported for vertebrates, but relatively little is known about invertebrates. In honeybees, nutrition has long been known to affect task performance and timing of behavioral transitions. Whether and how a dietary restriction during larval development affects the task performance of adult honeybees is largely unknown. We raised honeybees in-vitro, varying the amount of a standardized diet (150 µl, 160 µl, 180 µl in total). Emerging adults were marked and inserted into established colonies. Behavioral performance of nurse bees and foragers was investigated and physiological factors known to be involved in the regulation of social organization were quantified. Surprisingly, adult honeybees raised under different feeding regimes did not differ in any of the behaviors observed. No differences were observed in physiological parameters apart from weight. Honeybees were lighter when undernourished (150 µl), while they were heavier under the overfed treatment (180 µl) compared to the control group raised under a normal diet (160 µl). These data suggest that dietary restrictions during larval development do not affect task performance or physiology in this social insect despite producing clear effects on adult weight. We speculate that possible effects of larval undernourishment might be compensated during the early period of adult life.}, language = {en} }