@article{VillagomezNuernbergerRequieretal.2021, author = {Villagomez, Gemma N. and N{\"u}rnberger, Fabian and Requier, Fabrice and Schiele, Susanne and Steffan-Dewenter, Ingo}, title = {Effects of temperature and photoperiod on the seasonal timing of Western honey bee colonies and an early spring flowering plant}, series = {Ecology and Evolution}, volume = {11}, journal = {Ecology and Evolution}, number = {12}, doi = {10.1002/ece3.7616}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-258770}, pages = {7834-7849}, year = {2021}, abstract = {Temperature and photoperiod are important Zeitgebers for plants and pollinators to synchronize growth and reproduction with suitable environmental conditions and their mutualistic interaction partners. Global warming can disturb this temporal synchronization since interacting species may respond differently to new combinations of photoperiod and temperature under future climates, but experimental studies on the potential phenological responses of plants and pollinators are lacking. We simulated current and future combinations of temperature and photoperiod to assess effects on the overwintering and spring phenology of an early flowering plant species (Crocus sieberi) and the Western honey bee (Apis mellifera). We could show that increased mean temperatures in winter and early spring advanced the flowering phenology of C. sieberi and intensified brood rearing activity of A. mellifera but did not advance their brood rearing activity. Flowering phenology of C. sieberi also relied on photoperiod, while brood rearing activity of A. mellifera did not. The results confirm that increases in temperature can induce changes in phenological responses and suggest that photoperiod can also play a critical role in these responses, with currently unknown consequences for real-world ecosystems in a warming climate.}, language = {en} } @article{UphusLuepkeYuanetal.2021, author = {Uphus, Lars and L{\"u}pke, Marvin and Yuan, Ye and Benjamin, Caryl and Englmeier, Jana and Fricke, Ute and Ganuza, Cristina and Schwindl, Michael and Uhler, Johannes and Menzel, Annette}, title = {Climate effects on vertical forest phenology of Fagus sylvatica L., sensed by Sentinel-2, time lapse camera, and visual ground observations}, series = {Remote Sensing}, volume = {13}, journal = {Remote Sensing}, number = {19}, issn = {2072-4292}, doi = {10.3390/rs13193982}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-248419}, year = {2021}, abstract = {Contemporary climate change leads to earlier spring phenological events in Europe. In forests, in which overstory strongly regulates the microclimate beneath, it is not clear if further change equally shifts the timing of leaf unfolding for the over- and understory of main deciduous forest species, such as Fagus sylvatica L. (European beech). Furthermore, it is not known yet how this vertical phenological (mis)match — the phenological difference between overstory and understory — affects the remotely sensed satellite signal. To investigate this, we disentangled the start of season (SOS) of overstory F.sylvatica foliage from understory F. sylvatica foliage in forests, within nine quadrants of 5.8 × 5.8 km, stratified over a temperature gradient of 2.5 °C in Bavaria, southeast Germany, in the spring seasons of 2019 and 2020 using time lapse cameras and visual ground observations. We explained SOS dates and vertical phenological (mis)match by canopy temperature and compared these to Sentinel-2 derived SOS in response to canopy temperature. We found that overstory SOS advanced with higher mean April canopy temperature (visual ground observations: -2.86 days per °C; cameras: -2.57 days per °C). However, understory SOS was not significantly affected by canopy temperature. This led to an increase of vertical phenological mismatch with increased canopy temperature (visual ground observations: +3.90 days per °C; cameras: +2.52 days per °C). These results matched Sentinel-2-derived SOS responses, as pixels of higher canopy height advanced more by increased canopy temperature than pixels of lower canopy height. The results may indicate that, with further climate change, spring phenology of F. sylvatica overstory will advance more than F. sylvatica understory, leading to increased vertical phenological mismatch in temperate deciduous forests. This may have major ecological effects, but also methodological consequences for the field of remote sensing, as what the signal senses highly depends on the pixel mean canopy height and the vertical (mis)match.}, language = {en} } @article{ThornChaoBernhardtRoemermannetal.2020, author = {Thorn, Simon and Chao, Anne and Bernhardt-R{\"o}mermann, Markus and Chen, Yan-Han and Georgiev, Kostadin B. and Heibl, Christoph and M{\"u}ller, J{\"o}rg and Sch{\"a}fer, Hanno and B{\"a}ssler, Claus}, title = {Rare species, functional groups, and evolutionary lineages drive successional trajectories in disturbed forests}, series = {Ecology}, volume = {101}, journal = {Ecology}, number = {3}, doi = {10.1002/ecy.2949}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-212378}, pages = {e02949}, year = {2020}, abstract = {Following natural disturbances, additional anthropogenic disturbance may alter community recovery by affecting the occurrences of species, functional groups, and evolutionary lineages. However, our understanding of whether rare, common, or dominant species, functional groups, or evolutionary lineages are most strongly affected by an additional disturbance, particularly across multiple taxa, is limited. Here, we used a generalized diversity concept based on Hill numbers to quantify the community differences of vascular plants, bryophytes, lichens, wood-inhabiting fungi, saproxylic beetles, and birds in a storm-disturbed, experimentally salvage logged forest. Communities of all investigated species groups showed dissimilarities between logged and unlogged plots. Most species groups showed no significant changes in dissimilarities between logged and unlogged plots over the first seven years of succession, indicating a lack of community recovery. In general, the dissimilarities of communities were mainly driven by rare species. Convergence of dissimilarities occurred more often than divergence during the early stages of succession for rare species, indicating a major role in driving decreasing taxonomic dissimilarities between logged and unlogged plots over time. Trends in species dissimilarities only partially match the trends in dissimilarities of functional groups and evolutionary lineages, with little significant changes in successional trajectories. Nevertheless, common and dominant species contributed to a convergence of dissimilarities over time in the case of the functional dissimilarities of wood-inhabiting fungi. Our study shows that salvage logging following disturbances can alter successional trajectories in early stages of forest succession following natural disturbances. However, community changes over time may differ remarkably in different taxonomic groups and are best detected based on taxonomic, rather than functional or phylogenetic dissimilarities.}, language = {en} } @article{RothHackerHeidrichetal.2021, author = {Roth, Nicolas and Hacker, Herrmann Heinrich and Heidrich, Lea and Friess, Nicolas and Garc{\´i}a-Barroas, Enrique and Habel, Jan Christian and Thorn, Simon and M{\"u}ler, J{\"o}rg}, title = {Host specificity and species colouration mediate the regional decline of nocturnal moths in central European forests}, series = {Ecography}, volume = {44}, journal = {Ecography}, number = {6}, doi = {10.1111/ecog.05522}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-258731}, pages = {941-952}, year = {2021}, abstract = {The high diversity of insects has limited the volume of long-term community data with a high taxonomic resolution and considerable geographic replications, especially in forests. Therefore, trends and causes of changes are poorly understood. Here we analyse trends in species richness, abundance and biomass of nocturnal macro moths in three quantitative data sets collected over four decades in forests in southern Germany. Two local data sets, one from coppiced oak forests and one from high oak forests included 125K and 48K specimens from 559 and 532 species, respectively. A third regional data set, representing all forest types in the temperate zone of central Europe comprised 735K specimens from 848 species. Generalized additive mixed models revealed temporal declines in species richness (-38\%), abundance (-53\%) and biomass (-57\%) at the regional scale. These were more pronounced in plant host specialists and in dark coloured species. In contrast, the local coppiced oak forests showed an increase, in species richness (+62\%), while the high oak forests showed no clear trends. Left and right censoring as well as cross validation confirmed the robustness of the analyses, which led to four conclusions. First, the decline in insects appears in hyper diverse insect groups in forests and affects species richness, abundance and biomass. Second, the pronounced decline in host specialists suggests habitat loss as an important driver of the observed decline. Third, the more severe decline in dark species might be an indication of global warming as a potential driver. Fourth, the trends in coppiced oak forests indicate that maintaining complex and diverse forest ecosystems through active management may be a promising conservation strategy in order to counteract negative trends in biodiversity, alongside rewilding approaches.}, language = {en} } @article{RinawatiSteinLindner2013, author = {Rinawati, Fitria and Stein, Katharina and Lindner, Andr{\´e}}, title = {Climate change impacts on biodiversity-the setting of a lingering global crisis}, series = {Diversity}, volume = {5}, journal = {Diversity}, number = {1}, doi = {10.3390/d50100114}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-131866}, pages = {114-123}, year = {2013}, abstract = {Climate change has created potential major threats to global biodiversity. The multiple components of climate change are projected to affect all pillars of biodiversity, from genes over species to biome level. Of particular concerns are "tipping points" where the exceedance of ecosystem thresholds will possibly lead to irreversible shifts of ecosystems and their functioning. As biodiversity underlies all goods and services provided by ecosystems that are crucial for human survival and wellbeing, this paper presents potential effects of climate change on biodiversity, its plausible impacts on human society as well as the setting in addressing a global crisis. Species affected by climate change may respond in three ways: change, move or die. Local species extinctions or a rapidly affected ecosystem as a whole respectively might move toward its particular "tipping point", thereby probably depriving its services to human society and ending up in a global crisis. Urgent and appropriate actions within various scenarios of climate change impacts on biodiversity, especially in tropical regions, are needed to be considered. Foremost a multisectoral approach on biodiversity issues with broader policies, stringent strategies and programs at international, national and local levels is essential to meet the challenges of climate change impacts on biodiversity.}, language = {en} } @article{RedlichZhangBenjaminetal.2022, author = {Redlich, Sarah and Zhang, Jie and Benjamin, Caryl and Dhillon, Maninder Singh and Englmeier, Jana and Ewald, J{\"o}rg and Fricke, Ute and Ganuza, Cristina and Haensel, Maria and Hovestadt, Thomas and Kollmann, Johannes and Koellner, Thomas and K{\"u}bert-Flock, Carina and Kunstmann, Harald and Menzel, Annette and Moning, Christoph and Peters, Wibke and Riebl, Rebekka and Rummler, Thomas and Rojas-Botero, Sandra and Tobisch, Cynthia and Uhler, Johannes and Uphus, Lars and M{\"u}ller, J{\"o}rg and Steffan-Dewenter, Ingolf}, title = {Disentangling effects of climate and land use on biodiversity and ecosystem services—A multi-scale experimental design}, series = {Methods in Ecology and Evolution}, volume = {13}, journal = {Methods in Ecology and Evolution}, number = {2}, doi = {10.1111/2041-210X.13759}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-258270}, pages = {514-527}, year = {2022}, abstract = {Climate and land-use change are key drivers of environmental degradation in the Anthropocene, but too little is known about their interactive effects on biodiversity and ecosystem services. Long-term data on biodiversity trends are currently lacking. Furthermore, previous ecological studies have rarely considered climate and land use in a joint design, did not achieve variable independence or lost statistical power by not covering the full range of environmental gradients. Here, we introduce a multi-scale space-for-time study design to disentangle effects of climate and land use on biodiversity and ecosystem services. The site selection approach coupled extensive GIS-based exploration (i.e. using a Geographic information system) and correlation heatmaps with a crossed and nested design covering regional, landscape and local scales. Its implementation in Bavaria (Germany) resulted in a set of study plots that maximise the potential range and independence of environmental variables at different spatial scales. Stratifying the state of Bavaria into five climate zones (reference period 1981-2010) and three prevailing land-use types, that is, near-natural, agriculture and urban, resulted in 60 study regions (5.8 × 5.8 km quadrants) covering a mean annual temperature gradient of 5.6-9.8°C and a spatial extent of ~310 × 310 km. Within these regions, we nested 180 study plots located in contrasting local land-use types, that is, forests, grasslands, arable land or settlement (local climate gradient 4.5-10°C). This approach achieved low correlations between climate and land use (proportional cover) at the regional and landscape scale with |r ≤ 0.33| and |r ≤ 0.29| respectively. Furthermore, using correlation heatmaps for local plot selection reduced potentially confounding relationships between landscape composition and configuration for plots located in forests, arable land and settlements. The suggested design expands upon previous research in covering a significant range of environmental gradients and including a diversity of dominant land-use types at different scales within different climatic contexts. It allows independent assessment of the relative contribution of multi-scale climate and land use on biodiversity and ecosystem services. Understanding potential interdependencies among global change drivers is essential to develop effective restoration and mitigation strategies against biodiversity decline, especially in expectation of future climatic changes. Importantly, this study also provides a baseline for long-term ecological monitoring programs.}, language = {en} } @article{MaihoffFriessHoissetal.2023, author = {Maihoff, Fabienne and Friess, Nicolas and Hoiss, Bernhard and Schmid-Egger, Christian and Kerner, Janika and Neumayer, Johann and Hopfenm{\"u}ller, Sebastian and B{\"a}ssler, Claus and M{\"u}ller, J{\"o}rg and Classen, Alice}, title = {Smaller, more diverse and on the way to the top: Rapid community shifts of montane wild bees within an extraordinary hot decade}, series = {Diversity and Distributions}, volume = {29}, journal = {Diversity and Distributions}, number = {2}, doi = {10.1111/ddi.13658}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-312126}, pages = {272-288}, year = {2023}, abstract = {Aim Global warming is assumed to restructure mountain insect communities in space and time. Theory and observations along climate gradients predict that insect abundance and richness, especially of small-bodied species, will increase with increasing temperature. However, the specific responses of single species to rising temperatures, such as spatial range shifts, also alter communities, calling for intensive monitoring of real-world communities over time. Location German Alps and pre-alpine forests in south-east Germany. Methods We empirically examined the temporal and spatial change in wild bee communities and its drivers along two largely well-protected elevational gradients (alpine grassland vs. pre-alpine forest), each sampled twice within the last decade. Results We detected clear abundance-based upward shifts in bee communities, particularly in cold-adapted bumble bee species, demonstrating the speed with which mobile organisms can respond to climatic changes. Mean annual temperature was identified as the main driver of species richness in both regions. Accordingly, and in large overlap with expectations under climate warming, we detected an increase in bee richness and abundance, and an increase in small-bodied species in low- and mid-elevations along the grassland gradient. Community responses in the pre-alpine forest gradient were only partly consistent with community responses in alpine grasslands. Main Conclusion In well-protected temperate mountain regions, small-bodied bees may initially profit from warming temperatures, by getting more abundant and diverse. Less severe warming, and differences in habitat openness along the forested gradient, however, might moderate species responses. Our study further highlights the utility of standardized abundance data for revealing rapid changes in bee communities over only one decade.}, language = {en} } @article{JoschinskiHovestadtKrauss2015, author = {Joschinski, Jens and Hovestadt, Thomas and Krauss, Jochen}, title = {Coping with shorter days: do phenology shifts constrain aphid fitness?}, series = {PeerJ}, volume = {3}, journal = {PeerJ}, number = {e1103}, doi = {10.7717/peerj.1103}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148382}, year = {2015}, abstract = {Climate change can alter the phenology of organisms. It may thus lead seasonal organisms to face different day lengths than in the past, and the fitness consequences of these changes are as yet unclear. To study such effects, we used the pea aphid Acyrthosiphon pisum as a model organism, as it has obligately asexual clones which can be used to study day length effects without eliciting a seasonal response. We recorded life-history traits under short and long days, both with two realistic temperature cycles with means differing by 2 °C. In addition, we measured the population growth of aphids on their host plant Pisum sativum. We show that short days reduce fecundity and the length of the reproductive period of aphids. Nevertheless, this does not translate into differences at the population level because the observed fitness costs only become apparent late in the individual's life. As expected, warm temperature shortens the development time by 0.7 days/°C, leading to faster generation times. We found no interaction of temperature and day length. We conclude that day length changes cause only relatively mild costs, which may not decelerate the increase in pest status due to climate change.}, language = {en} } @article{DitzelKoenigMusembietal.2022, author = {Ditzel, Pia and K{\"o}nig, Sebastian and Musembi, Peter and Peters, Marcell K.}, title = {Correlation between coral reef condition and the diversity and abundance of fishes and sea urchins on an East African coral reef}, series = {Oceans}, volume = {3}, journal = {Oceans}, number = {1}, issn = {2673-1924}, doi = {10.3390/oceans3010001}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284503}, pages = {1 -- 14}, year = {2022}, abstract = {Coral reefs are one of the most diverse marine ecosystems, providing numerous ecosystem services. This present study investigated the relationship between coral reef condition and the diversity and abundance of fishes, on a heavily fished East African coral reef at Gazi Bay, Kenya. Underwater visual censuses were conducted on thirty 50 × 5 m belt transects to assess the abundance and diversity of fishes. In parallel, a 25-m length of each of the same transects was recorded with photo-quadrats to assess coral community structure and benthic characteristics. For statistical analyses, multi-model inference based on the Akaike Information Criterion was used to evaluate the support for potential predictor variables of coral reef and fish diversity. We found that coral genus richness was negatively correlated with the abundance of macroalgae, whereas coral cover was positively correlated with both the abundance of herbivorous invertebrates (sea urchins) and with fish family richness. Similarly, fish family richness appeared mainly correlated with coral cover and invertebrate abundance, although no correlates of fish abundance could be identified. Coral and fish diversity were very low, but it appears that, contrary to some locations on the same coast, sea urchin abundance was not high enough to be having a negative influence on coral and fish assemblages. Due to increasing threats to coral reefs, it is important to understand the relationship among the components of the coral reef ecosystem on overfished reefs such as that at Gazi Bay.}, language = {en} } @article{CorneliusLeingaertnerHoissetal.2013, author = {Cornelius, Christine and Leing{\"a}rtner, Annette and Hoiss, Bernhard and Krauss, Jochen and Steffan-Dewenter, Ingolf and Menzel, Annette}, title = {Phenological response of grassland species to manipulative snowmelt and drought along an altitudinal gradient}, series = {Journal of Experimental Botany}, volume = {64}, journal = {Journal of Experimental Botany}, number = {1}, doi = {10.1093/jxb/ers321}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-126888}, pages = {241-251}, year = {2013}, abstract = {Plant communities in the European Alps are assumed to be highly affected by climate change, as the temperature rise in this region is above the global average. It is predicted that higher temperatures will lead to advanced snowmelt dates and that the number of extreme weather events will increase. The aims of this study were to determine the impacts of extreme climatic events on flower phenology and to assess whether those impacts differed between lower and higher altitudes. In 2010, an experiment simulating advanced and delayed snowmelt as well as a drought event was conducted along an altitudinal transect approximately every 250 m (600-2000 m above sea level) in the Berchtesgaden National Park, Germany. The study showed that flower phenology was strongly affected by altitude; however, there were few effects of the manipulative treatments on flowering. The effects of advanced snowmelt were significantly greater at higher than at lower sites, but no significant difference was found between both altitudinal bands for the other treatments. The response of flower phenology to temperature declined through the season and the length of flowering duration was not significantly influenced by treatments. The stronger effect of advanced snowmelt at higher altitudes may be a response to differences in treatment intensity across the gradient. Consequently, shifts in the date of snowmelt due to global warming may affect species more at higher than at lower altitudes, as changes may be more pronounced at higher altitudes. These data indicate a rather low risk of drought events on flowering phenology in the Bavarian Alps.}, language = {en} }