@article{AdamDeimelPardoMedinaetal.2018, author = {Adam, Alexander and Deimel, Stephan and Pardo-Medina, Javier and Garc{\´i}a-Mart{\´i}nez, Jorge and Konte, Tilen and Lim{\´o}n, M. Carmen and Avalos, Javier and Terpitz, Ulrich}, title = {Protein activity of the \(Fusarium\) \(fujikuroi\) rhodopsins CarO and OpsA and their relation to fungus-plant interaction}, series = {International Journal of Molecular Sciences}, volume = {19}, journal = {International Journal of Molecular Sciences}, number = {1}, issn = {1422-0067}, doi = {10.3390/ijms19010215}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-285125}, year = {2018}, abstract = {Fungi possess diverse photosensory proteins that allow them to perceive different light wavelengths and to adapt to changing light conditions in their environment. The biological and physiological roles of the green light-sensing rhodopsins in fungi are not yet resolved. The rice plant pathogen Fusarium fujikuroi exhibits two different rhodopsins, CarO and OpsA. CarO was previously characterized as a light-driven proton pump. We further analyzed the pumping behavior of CarO by patch-clamp experiments. Our data show that CarO pumping activity is strongly augmented in the presence of the plant hormone indole-3-acetic acid and in sodium acetate, in a dose-dependent manner under slightly acidic conditions. By contrast, under these and other tested conditions, the Neurospora rhodopsin (NR)-like rhodopsin OpsA did not exhibit any pump activity. Basic local alignment search tool (BLAST) searches in the genomes of ascomycetes revealed the occurrence of rhodopsin-encoding genes mainly in phyto-associated or phytopathogenic fungi, suggesting a possible correlation of the presence of rhodopsins with fungal ecology. In accordance, rice plants infected with a CarO-deficient F. fujikuroi strain showed more severe bakanae symptoms than the reference strain, indicating a potential role of the CarO rhodopsin in the regulation of plant infection by this fungus.}, language = {en} } @article{AnelliOrdasKneitzetal.2018, author = {Anelli, Viviana and Ordas, Anita and Kneitz, Susanne and Sagredo, Leonel Munoz and Gourain, Victor and Schartl, Manfred and Meijer, Annemarie H. and Mione, Marina}, title = {Ras-Induced miR-146a and 193a Target Jmjd6 to Regulate Melanoma Progression}, series = {Frontiers in Genetics}, volume = {9}, journal = {Frontiers in Genetics}, number = {675}, issn = {1664-8021}, doi = {10.3389/fgene.2018.00675}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-196963}, year = {2018}, abstract = {Ras genes are among the most commonly mutated genes in human cancer; yet our understanding of their oncogenic activity at the molecular mechanistic level is incomplete. To identify downstream events that mediate ras-induced cellular transformation in vivo, we analyzed global microRNA expression in three different models of Ras-induction and tumor formation in zebrafish. Six microRNAs were found increased in Ras-induced melanoma, glioma and in an inducible model of ubiquitous Ras expression. The upregulation of the microRNAs depended on the activation of the ERK and AKT pathways and to a lesser extent, on mTOR signaling. Two Ras-induced microRNAs (miR-146a and 193a) target Jmjd6, inducing downregulation of its mRNA and protein levels at the onset of Ras expression during melanoma development. However, at later stages of melanoma progression, jmjd6 levels were found elevated. The dynamic of Jmjd6 levels during progression of melanoma in the zebrafish model suggests that upregulation of the microRNAs targeting Jmjd6 may be part of an anti-cancer response. Indeed, triple transgenic fish engineered to express a microRNA-resistant Jmjd6 from the onset of melanoma have increased tumor burden, higher infiltration of leukocytes and shorter melanoma-free survival. Increased JMJD6 expression is found in several human cancers, including melanoma, suggesting that the up-regulation of Jmjd6 is a critical event in tumor progression. The following link has been created to allow review of record GSE37015: http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=jjcrbiuicyyqgpc\&acc=GSE37015.}, language = {en} } @article{BartmannJanakiRamanFloeteretal.2018, author = {Bartmann, Catharina and Janaki Raman, Sudha R. and Fl{\"o}ter, Jessica and Schulze, Almut and Bahlke, Katrin and Willingstorfer, Jana and Strunz, Maria and W{\"o}ckel, Achim and Klement, Rainer J. and Kapp, Michaela and Djuzenova, Cholpon S. and Otto, Christoph and K{\"a}mmerer, Ulrike}, title = {Beta-hydroxybutyrate (3-OHB) can influence the energetic phenotype of breast cancer cells, but does not impact their proliferation and the response to chemotherapy or radiation}, series = {Cancer \& Metabolism}, volume = {6}, journal = {Cancer \& Metabolism}, number = {8}, doi = {10.1186/s40170-018-0180-9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-175607}, year = {2018}, abstract = {Background: Ketogenic diets (KDs) or short-term fasting are popular trends amongst supportive approaches for cancer patients. Beta-hydroxybutyrate (3-OHB) is the main physiological ketone body, whose concentration can reach plasma levels of 2-6 mM during KDs or fasting. The impact of 3-OHB on the biology of tumor cells described so far is contradictory. Therefore, we investigated the effect of a physiological concentration of 3 mM 3-OHB on metabolism, proliferation, and viability of breast cancer (BC) cells in vitro. Methods: Seven different human BC cell lines (BT20, BT474, HBL100, MCF-7, MDA-MB 231, MDA-MB 468, and T47D) were cultured in medium with 5 mM glucose in the presence of 3 mM 3-OHB at mild hypoxia (5\% oxygen) or normoxia (21\% oxygen). Metabolic profiling was performed by quantification of the turnover of glucose, lactate, and 3-OHB and by Seahorse metabolic flux analysis. Expression of key enzymes of ketolysis as well as the main monocarboxylic acid transporter MCT2 and the glucose-transporter GLUT1 was analyzed by RT-qPCR and Western blotting. The effect of 3-OHB on short- and long-term cell proliferation as well as chemo- and radiosensitivity were also analyzed. Results: 3-OHB significantly changed the oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) in BT20 cells resulting in a more oxidative energetic phenotype. MCF-7 and MDA-MB 468 cells had increased ECAR only in response to 3-OHB, while the other three cell types remained uninfluenced. All cells expressed MCT2 and GLUT1, thus being able to uptake the metabolites. The consumption of 3-OHB was not strongly linked to mRNA overexpression of key enzymes of ketolysis and did not correlate with lactate production and glucose consumption. Neither 3-OHB nor acetoacetate did interfere with proliferation. Further, 3-OHB incubation did not modify the response of the tested BC cell lines to chemotherapy or radiation. Conclusions: We found that a physiological level of 3-OHB can change the energetic profile of some BC cell lines. However, 3-OHB failed to influence different biologic processes in these cells, e.g., cell proliferation and the response to common breast cancer chemotherapy and radiotherapy. Thus, we have no evidence that 3-OHB generally influences the biology of breast cancer cells in vitro.}, language = {en} } @article{BatzkeBuechelHansenetal.2018, author = {Batzke, Katharina and B{\"u}chel, Gabriele and Hansen, Wiebke and Schramm, Alexander}, title = {TrkB-target Galectin-1 impairs immune activation and radiation responses in neuroblastoma: implications for tumour therapy}, series = {International Journal of Molecular Sciences}, volume = {19}, journal = {International Journal of Molecular Sciences}, number = {3}, issn = {1422-0067}, doi = {10.3390/ijms19030718}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-285097}, year = {2018}, abstract = {Galectin-1 (Gal-1) has been described to promote tumour growth by inducing angiogenesis and to contribute to the tumour immune escape. We had previously identified up-regulation of Gal-1 in preclinical models of aggressive neuroblastoma (NB), the most common extracranial tumour of childhood. While Gal-1 did not confer a survival advantage in the absence of exogenous stressors, Gal-1 contributed to enhanced cell migratory and invasive properties. Here, we review these findings and extend them by analyzing Gal-1 mediated effects on immune cell regulation and radiation resistance. In line with previous results, cell autonomous effects as well as paracrine functions contribute to Gal-1 mediated pro-tumourigenic functions. Interfering with Gal-1 functions in vivo will add to a better understanding of the role of the Gal-1 axis in the complex tumour-host interaction during immune-, chemo- and radiotherapy of neuroblastoma.}, language = {en} } @article{BeckHovhanyanMenegazzietal.2018, author = {Beck, Katherina and Hovhanyan, Anna and Menegazzi, Pamela and Helfrich-F{\"o}rster, Charlotte and Raabe, Thomas}, title = {Drosophila RSK Influences the Pace of the Circadian Clock by Negative Regulation of Protein Kinase Shaggy Activity}, series = {Frontiers in Molecular Neuroscience}, volume = {11}, journal = {Frontiers in Molecular Neuroscience}, number = {122}, issn = {1662-5099}, doi = {10.3389/fnmol.2018.00122}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-196034}, year = {2018}, abstract = {Endogenous molecular circadian clocks drive daily rhythmic changes at the cellular, physiological, and behavioral level for adaptation to and anticipation of environmental signals. The core molecular system consists of autoregulatory feedback loops, where clock proteins inhibit their own transcription. A complex and not fully understood interplay of regulatory proteins influences activity, localization and stability of clock proteins to set the pace of the clock. This study focuses on the molecular function of Ribosomal S6 Kinase (RSK) in the Drosophila melanogaster circadian clock. Mutations in the human rsk2 gene cause Coffin-Lowry syndrome, which is associated with severe mental disabilities. Knock-out studies with Drosophila ortholog rsk uncovered functions in synaptic processes, axonal transport and adult behavior including associative learning and circadian activity. However, the molecular targets of RSK remain elusive. Our experiments provide evidence that RSK acts in the key pace maker neurons as a negative regulator of Shaggy (SGG) kinase activity, which in turn determines timely nuclear entry of the clock proteins Period and Timeless to close the negative feedback loop. Phosphorylation of serine 9 in SGG is mediated by the C-terminal kinase domain of RSK, which is in agreement with previous genetic studies of RSK in the circadian clock but argues against the prevailing view that only the N-terminal kinase domain of RSK proteins carries the effector function. Our data provide a mechanistic explanation how RSK influences the molecular clock and imply SGG S9 phosphorylation by RSK and other kinases as a convergence point for diverse cellular and external stimuli.}, language = {en} } @article{BeckYuStrzelczykPaulsetal.2018, author = {Beck, Sebastian and Yu-Strzelczyk, Jing and Pauls, Dennis and Constantin, Oana M. and Gee, Christine E. and Ehmann, Nadine and Kittel, Robert J. and Nagel, Georg and Gao, Shiqiang}, title = {Synthetic light-activated ion channels for optogenetic activation and inhibition}, series = {Frontiers in Neuroscience}, volume = {12}, journal = {Frontiers in Neuroscience}, number = {643}, doi = {10.3389/fnins.2018.00643}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-177520}, year = {2018}, abstract = {Optogenetic manipulation of cells or living organisms became widely used in neuroscience following the introduction of the light-gated ion channel channelrhodopsin-2 (ChR2). ChR2 is a non-selective cation channel, ideally suited to depolarize and evoke action potentials in neurons. However, its calcium (Ca2\(^{2+}\)) permeability and single channel conductance are low and for some applications longer-lasting increases in intracellular Ca\(^{2+}\) might be desirable. Moreover, there is need for an efficient light-gated potassium (K\(^{+}\)) channel that can rapidly inhibit spiking in targeted neurons. Considering the importance of Ca\(^{2+}\) and K\(^{+}\) in cell physiology, light-activated Ca\(^{2+}\)-permeant and K\(^{+}\)-specific channels would be welcome additions to the optogenetic toolbox. Here we describe the engineering of novel light-gated Ca\(^{2+}\)-permeant and K\(^{+}\)-specific channels by fusing a bacterial photoactivated adenylyl cyclase to cyclic nucleotide-gated channels with high permeability for Ca\(^{2+}\) or for K\(^{+}\), respectively. Optimized fusion constructs showed strong light-gated conductance in Xenopus laevis oocytes and in rat hippocampal neurons. These constructs could also be used to control the motility of Drosophila melanogaster larvae, when expressed in motoneurons. Illumination led to body contraction when motoneurons expressed the light-sensitive Ca\(^{2+}\)-permeant channel, and to body extension when expressing the light-sensitive K\(^{+}\) channel, both effectively and reversibly paralyzing the larvae. Further optimization of these constructs will be required for application in adult flies since both constructs led to eclosion failure when expressed in motoneurons.}, language = {en} } @article{BencurovaGuptaSarukhanyanetal.2018, author = {Bencurova, Elena and Gupta, Shishir K. and Sarukhanyan, Edita and Dandekar, Thomas}, title = {Identification of antifungal targets based on computer modeling}, series = {Journal of Fungi}, volume = {4}, journal = {Journal of Fungi}, number = {3}, issn = {2309-608X}, doi = {10.3390/jof4030081}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-197670}, pages = {81}, year = {2018}, abstract = {Aspergillus fumigatus is a saprophytic, cosmopolitan fungus that attacks patients with a weak immune system. A rational solution against fungal infection aims to manipulate fungal metabolism or to block enzymes essential for Aspergillus survival. Here we discuss and compare different bioinformatics approaches to analyze possible targeting strategies on fungal-unique pathways. For instance, phylogenetic analysis reveals fungal targets, while domain analysis allows us to spot minor differences in protein composition between the host and fungi. Moreover, protein networks between host and fungi can be systematically compared by looking at orthologs and exploiting information from host-pathogen interaction databases. Further data—such as knowledge of a three-dimensional structure, gene expression data, or information from calculated metabolic fluxes—refine the search and rapidly put a focus on the best targets for antimycotics. We analyzed several of the best targets for application to structure-based drug design. Finally, we discuss general advantages and limitations in identification of unique fungal pathways and protein targets when applying bioinformatics tools.}, language = {en} } @article{BiscottiAdolfiBaruccaetal.2018, author = {Biscotti, Maria Assunta and Adolfi, Mateus Contar and Barucca, Marco and Forconi, Mariko and Pallavicini, Alberto and Gerdol, Marco and Canapa, Adriana and Schartl, Manfred}, title = {A comparative view on sex differentiation and gametogenesis genes in lungfish and coelacanths}, series = {Genome Biology and Evolution}, volume = {10}, journal = {Genome Biology and Evolution}, number = {6}, doi = {10.1093/gbe/evy101}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-176774}, pages = {1430-1444}, year = {2018}, abstract = {Gonadal sex differentiation and reproduction are the keys to the perpetuation of favorable gene combinations and positively selected traits. In vertebrates, several gonad development features that differentiate tetrapods and fishes are likely to be, at least in part, related to the water-to-land transition. The collection of information from basal sarcopterygians, coelacanths, and lungfishes, is crucial to improve our understanding of the molecular evolution of pathways involved in reproductive functions, since these organisms are generally regarded as "living fossils" and as the direct ancestors of tetrapods. Here, we report for the first time the characterization of >50 genes related to sex differentiation and gametogenesis in Latimeria menadoensis and Protopterus annectens. Although the expression profiles of most genes is consistent with the intermediate position of basal sarcopterygians between actinopterygian fish and tetrapods, their phylogenetic placement and presence/absence patterns often reveal a closer affinity to the tetrapod orthologs. On the other hand, particular genes, for example, the male gonad factor gsdf (Gonadal Soma-Derived Factor), provide examples of ancestral traits shared with actinopterygians, which disappeared in the tetrapod lineage.}, language = {en} } @article{BoetzlRiesSchneideretal.2018, author = {Boetzl, Fabian A. and Ries, Elena and Schneider, Gudrun and Krauss, Jochen}, title = {It's a matter of design - how pitfall trap design affects trap samples and possible predictions}, series = {PeerJ}, volume = {6}, journal = {PeerJ}, number = {e5078}, doi = {10.7717/peerj.5078}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-176870}, year = {2018}, abstract = {Background: Pitfall traps are commonly used to assess ground dwelling arthropod communities. The effects of different pitfall trap designs on the trapping outcome are poorly investigated however they might affect conclusions drawn from pitfall trap data greatly. Methods: We tested four pitfall trap types which have been used in previous studies for their effectiveness: a simple type, a faster exchangeable type with an extended plastic rim plate and two types with guidance barriers (V- and X-shaped). About 20 traps were active for 10 weeks and emptied biweekly resulting in 100 trap samples. Results: Pitfall traps with guidance barriers were up to five times more effective than simple pitfall traps and trap samples resulted in more similar assemblage approximations. Pitfall traps with extended plastic rim plates did not only perform poorly but also resulted in distinct carabid assemblages with less individuals of small species and a larger variation. Discussion: Due to the obvious trait filtering and resulting altered assemblages, we suggest not to use pitfall traps with extended plastic rim plates. In comprehensive biodiversity inventories, a smaller number of pitfall traps with guidance barriers and a larger number of spatial replicates is of advantage, while due to comparability reasons, the use of simple pitfall traps will be recommended in most other cases.}, language = {en} } @article{BuellesbachVetterSchmitt2018, author = {Buellesbach, Jan and Vetter, Sebastian G. and Schmitt, Thomas}, title = {Differences in the reliance on cuticular hydrocarbons as sexual signaling and species discrimination cues in parasitoid wasps}, series = {Frontiers in Zoology}, volume = {15}, journal = {Frontiers in Zoology}, doi = {10.1186/s12983-018-0263-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-221702}, year = {2018}, abstract = {Background Cuticular hydrocarbons (CHC) have been documented to play crucial roles as species- and sex-specific cues in the chemical communication systems of a wide variety of insects. However, whether they are sufficient by themselves as the sole cue triggering sexual behavior as well as preference of con- over heterospecific mating partners is rarely assessed. We conducted behavioral assays in three representative species of parasitoid wasps (Hymenoptera: Pteromalidae) to determine their reliance on CHC as species-specific sexual signaling cues. Results We found a surprising degree of either unspecific or insufficient sexual signaling when CHC are singled out as recognition cues. Most strikingly, the cosmopolitan species Nasonia vitripennis, expected to experience enhanced selection pressure to discriminate against other co-occurring parasitoids, did not discriminate against CHC of a partially sympatric species from another genus, Trichomalopsis sarcophagae. Focusing on the latter species, in turn, it became apparent that CHC are even insufficient as the sole cue triggering conspecific sexual behavior, hinting at the requirement of additional, synergistic sexual cues particularly important in this species. Finally, in the phylogenetically and chemically most divergent species Muscidifurax uniraptor, we intriguingly found both CHC-based sexual signaling as well as species discrimination behavior intact although this species is naturally parthenogenetic with sexual reproduction only occurring under laboratory conditions. Conclusions Our findings implicate a discrepancy in the reliance on and specificity of CHC as sexual cues in our tested parasitioid wasps. CHC profiles were not sufficient for unambiguous discrimination and preference behavior, as demonstrated by clear cross-attraction between some of our tested wasp genera. Moreover, we could show that only in T. sarcophagae, additional behavioral cues need to be present for triggering natural mating behavior, hinting at an interesting shift in signaling hierarchy in this particular species. This demonstrates the importance of integrating multiple, potentially complementary signaling modalities in future studies for a better understanding of their individual contributions to natural sexual communication behavior.}, language = {en} }