@article{ElkonLoayzaPuchKorkmazetal.2015, author = {Elkon, Ran and Loayza-Puch, Fabricio and Korkmaz, Gozde and Lopes, Rui and van Breugel, Pieter C and Bleijerveld, Onno B and Altelaar, AF Maarten and Wolf, Elmar and Lorenzin, Francesca and Eilers, Martin and Agami, Reuven}, title = {Myc coordinates transcription and translation to enhance transformation and suppress invasiveness}, series = {EMBO reports}, volume = {16}, journal = {EMBO reports}, number = {12}, doi = {10.15252/embr.201540717}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-150373}, pages = {1723-1736}, year = {2015}, abstract = {c-Myc is one of the major human proto-oncogenes and is often associated with tumor aggression and poor clinical outcome. Paradoxically, Myc was also reported as a suppressor of cell motility, invasiveness, and metastasis. Among the direct targets of Myc are many components of the protein synthesis machinery whose induction results in an overall increase in protein synthesis that empowers tumor cell growth. At present, it is largely unknown whether beyond the global enhancement of protein synthesis, Myc activation results in translation modulation of specific genes. Here, we measured Myc-induced global changes in gene expression at the transcription, translation, and protein levels and uncovered extensive transcript-specific regulation of protein translation. Particularly, we detected a broad coordination between regulation of transcription and translation upon modulation of Myc activity and showed the connection of these responses to mTOR signaling to enhance oncogenic transformation and to the TGFβ pathway to modulate cell migration and invasiveness. Our results elucidate novel facets of Myc-induced cellular responses and provide a more comprehensive view of the consequences of its activation in cancer cells.}, language = {en} } @article{LeikamHufnagelOttoetal.2015, author = {Leikam, C and Hufnagel, AL and Otto, C and Murphy, DJ and M{\"u}hling, B and Kneitz, S and Nanda, I and Schmid, M and Wagner, TU and Haferkamp, S and Br{\"o}cker, E-B and Schartl, M and Meierjohann, S}, title = {In vitro evidence for senescent multinucleated melanocytes as a source for tumor-initiating cells}, series = {Cell Death and Disease}, volume = {6}, journal = {Cell Death and Disease}, number = {e1711}, doi = {10.1038/cddis.2015.71}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148718}, year = {2015}, abstract = {Oncogenic signaling in melanocytes results in oncogene-induced senescence (OIS), a stable cell-cycle arrest frequently characterized by a bi-or multinuclear phenotype that is considered as a barrier to cancer progression. However, the long-sustained conviction that senescence is a truly irreversible process has recently been challenged. Still, it is not known whether cells driven into OIS can progress to cancer and thereby pose a potential threat. Here, we show that prolonged expression of the melanoma oncogene N-RAS\(^{61K}\) in pigment cells overcomes OIS by triggering the emergence of tumor-initiating mononucleated stem-like cells from senescent cells. This progeny is dedifferentiated, highly proliferative, anoikis-resistant and induces fast growing, metastatic tumors. Our data describe that differentiated cells, which are driven into senescence by an oncogene, use this senescence state as trigger for tumor transformation, giving rise to highly aggressive tumor-initiating cells. These observations provide the first experimental in vitro evidence for the evasion of OIS on the cellular level and ensuing transformation.}, language = {en} } @article{SchartlShenMaurusetal.2015, author = {Schartl, Manfred and Shen, Yingjia and Maurus, Katja and Walter, Ron and Tomlinson, Chad and Wilson, Richard K. and Postlethwait, John and Warren, Wesley C.}, title = {Whole body melanoma transcriptome response in medaka}, series = {PLoS ONE}, volume = {10}, journal = {PLoS ONE}, number = {12}, doi = {10.1371/journal.pone.0143057}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-144714}, pages = {e0143057}, year = {2015}, abstract = {The incidence of malignant melanoma continues to increase each year with poor prognosis for survival in many relapse cases. To reverse this trend, whole body response measures are needed to discover collaborative paths to primary and secondary malignancy. Several species of fish provide excellent melanoma models because fish and human melanocytes both appear in the epidermis, and fish and human pigment cell tumors share conserved gene expression signatures. For the first time, we have examined the whole body transcriptome response to invasive melanoma as a prelude to using transcriptome profiling to screen for drugs in a medaka (Oryzias latipes) model. We generated RNA-seq data from whole body RNA isolates for controls and melanoma fish. After testing for differential expression, 396 genes had significantly different expression (adjusted p-value <0.02) in the whole body transcriptome between melanoma and control fish; 379 of these genes were matched to human orthologs with 233 having annotated human gene symbols and 14 matched genes that contain putative deleterious variants in human melanoma at varying levels of recurrence. A detailed canonical pathway evaluation for significant enrichment showed the top scoring pathway to be antigen presentation but also included the expected melanocyte development and pigmentation signaling pathway. Results revealed a profound down-regulation of genes involved in the immune response, especially the innate immune system. We hypothesize that the developing melanoma actively suppresses the immune system responses of the body in reacting to the invasive malignancy, and that this mal-adaptive response contributes to disease progression, a result that suggests our whole-body transcriptomic approach merits further use. In these findings, we also observed novel genes not yet identified in human melanoma expression studies and uncovered known and new candidate drug targets for further testing in this malignant melanoma medaka model.}, language = {en} } @phdthesis{Gnamlin2015, author = {Gnamlin, Prisca}, title = {Use of Tumor Vasculature for Successful Treatment of Carcinomas by Oncolytic Vaccinia Virus}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-119019}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Tumor-induced angiogenesis is of major interest for oncology research. Vascular endothelial growth factor (VEGF) is the most potent angiogenic factor characterized so far. VEGF blockade was shown to be sufficient for angiogenesis inhibition and subsequent tumor regression in several preclinical tumor models. Bevacizumab was the first treatment targeting specifically tumor-induced angiogenesis through VEGF blockade to be approved by the Food and Drugs Administration (FDA) for cancer treatment. However, after very promising results in preclinical evaluations, VEGF blockade did not show the expected success in patients. Some tumors became resistant to VEGF blockade. Several factors have been accounted responsible, the over-expression of other angiogenic factors, the noxious influence of VEFG blockade on normal tissues, the selection of hypoxia resistant neoplastic cells, the recruitment of hematopoietic progenitor cells and finally the transient nature of angiogenesis inhibition by VEGF blockade. The development of blocking agents against other angiogenic factors like placental growth factor (PlGF) and Angiopoietin-2 (Ang-2) allows the development of an anti-angiogenesis strategy adapted to the profile of the tumor. Oncolytic virotherapy uses the natural propensity of viruses to colonize tumors to treat cancer. The recombinant vaccinia virus GLV-1h68 was shown to infect, colonize and lyse several tumor types. Its descendant GLV-1h108, expressing an anti-VEGF antibody, was proved in previous studies to inhibit efficiently tumor induced angiogenesis. Additional VACVs expressing single chain antibodies (scAb) antibodies against PlGF and Ang-2 alone or in combination with anti VEGF scAb were designed. In this study, VACV-mediated anti-angiogenesis treatments have been evaluated in several preclinical tumor models. The efficiency of PlGF blockade, alone or in combination with VEGF, mediated by VACV has been established and confirmed. PlGF inhibition alone or with VEGF reduced tumor burden 5- and 2-folds more efficiently than the control virus, respectively. Ang-2 blockade efficiency for cancer treatment gave controversial results when tested in different laboratories. Here we demonstrated that unlike VEGF, the success of Ang-2 blockade is not only correlated to the strength of the blockade. A particular balance between Ang-2, VEGF and Ang-1 needs to be induced by the treatment to see a regression of the tumor and an improved survival. We saw that Ang-2 inhibition delayed tumor growth up to 3-folds compared to the control virus. These same viruses induced statistically significant tumor growth delays. This study unveiled the need to establish an angiogenic profile of the tumor to be treated as well as the necessity to better understand the synergic effects of VEGF and Ang-2. In addition angiogenesis inhibition by VACV-mediated PlGF and Ang-2 blockade was able to reduce the number of metastases and migrating tumor cells (even more efficiently than VEGF blockade). VACV colonization of tumor cells, in vitro, was limited by VEGF, when the use of the anti-VEGF VACV GLV-1h108 drastically improved the colonization efficiency up to 2-fold, 72 hours post-infection. These in vitro data were confirmed by in vivo analysis of tumors. Fourteen days post-treatment, the anti-VEGF virus GLV-1h108 was colonizing 78.8\% of the tumors when GLV-1h68 colonization rate was 49.6\%. These data confirmed the synergistic effect of VEGF blockade and VACV replication for tumor regression. Three of the tumor cell lines used to assess VACV-mediated angiogenesis inhibition were found, in certain conditions, to mimic either endothelial cell or pericyte functions, and participate directly to the vascular structure. The expression by these tumor cells of e-selectin, p-selectin, ICAM-1 and VCAM-1, normally expressed on activated endothelial cells, corroborates our findings. These proteins play an important role in immune cell recruitment, and there amount vary in presence of VEGF, PlGF and Ang-2, confirming the involvement of angiogenic factors in the immuno-modulatory abilities of tumors. In this study VACV-mediated angiogenesis blockade proved its potential as a therapeutic agent able to treat different tumor types and prevent resistance observed during bevacizumab treatment by acting on different factors. First, the expression of several antibodies by VACV would prevent another angiogenic factor to take over VEGF and stimulate angiogenesis. Then, the ability of VACV to infect tumor cells would prevent them to form blood vessel-like structures to sustain tumor growth, and the localized delivery of the antibody would decrease the risk of adverse effects. Next, the blockade of angiogenic factors would improve VACV replication and decrease the immune-modulatory effect of tumors. Finally the fact that angiogenesis blockade lasts until total regression of the tumor would prevent the recovery of the tumor-associated vasculature and the relapse of patients.}, subject = {Vaccinia-Virus}, language = {en} }