@phdthesis{Leibold2003, author = {Leibold, Christian}, title = {Das Cystein String Protein von Drosophila melanogaster - Invivo-Funktionsanalyse verschiedener Proteindom{\"a}nen am Modellsystem der larvalen neuromuskul{\"a}ren Synapse}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-7481}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2003}, abstract = {Cystein String Proteine (CSPs) wurden als synaptische Vesikelproteine entdeckt. In Drosophila werden sie in den funktionellen Synapsen und sekretorischen Organellen aller Entwicklungsstufen exprimiert. Es konnte gezeigt werden, dass CSPs an der regulierten Neurotransmitteraussch{\"u}ttung beteiligt sind und mehrere, von Insekten bis zum Menschen konservierte Dom{\"a}nen besitzen: eine N-terminale Phosphorylierungsstelle der Protein Kinase A (PKA), eine J-Dom{\"a}ne mit 50\%iger Homologie zum bakteriellen Chaperone-Protein DnaJ, eine Linker-Dom{\"a}ne, einen Cystein String aus elf aufeinander folgenden Cysteinen, die durch zwei Cystein-Paare flankiert werden und einen variableren C-Terminus. Es wurden Interaktionen mit den Proteinen HSC70, SGT, Syntaxin, Synaptobrevin/VAMP, verschiedenen Untereinheiten von G-Proteinen, Synaptotagmin, sowie spannungsabh{\"a}ngigen Ca2+-Kan{\"a}len beschrieben. csp-Nullmutanten CspU1 von Drosophila melanogaster zeigen einen temperatursensitiven Ph{\"a}notyp, in dem adulte Fliegen von CspU1 reversibel bei 37°C innerhalb von drei Minuten paralysieren. An der neuromuskul{\"a}ren Synapse dritter Larven von CspU1 kann bei nicht-permissiver Temperatur von 32°C eine reversible Blockade der synaptischen Transmission beobachtet werden. In der vorliegenden Arbeit sollten mit Hilfe des larvalen Nerv-Muskel-Pr{\"a}parats dritter Larven elektrophysiologische Untersuchungen an verschiedenen csp-Mutanten durchgef{\"u}hrt werden. Hierdurch sollte die Bedeutung der einzelnen Dom{\"a}nen f{\"u}r die Funktion von csp weiter aufgekl{\"a}rt werden. Am larvalen Nerv-Muskel-Pr{\"a}parat von Drosophila ist eine Arbeit auf Einzel-Zell-Niveau m{\"o}glich. Die Segmentierung, die wiederkehrende Anordnung von Muskeln und innervierenden Motoneuronen, sowie das Vorkommen vieler auch im Gehirn von Drosophila lokalisierter synaptischer Proteine machen die larvale neuromuskul{\"a}re Synapse f{\"u}r die vorliegenden Fragestellungen. Wie in vielen anderen Arbeiten, wurden elektrophysiologische Messungen an dem Longitudinalmuskel 6 durchgef{\"u}hrt. Alle Messungen evozierter Muskelpotentiale (EJP) wurden, wenn nicht anders erw{\"a}hnt, mit 0,2Hz Stimulusfrequenz durchgef{\"u}hrt. Die Reiz-Intensit{\"a}t wurde an jedes Pr{\"a}parat individuell angepasst und betrug das 2 ½ -fache des Initial-Schwellenwertes, bei dem ein vollst{\"a}ndiges EJP ausgel{\"o}st wurde. Zun{\"a}chst konnte der in der Literatur beschriebene larvale Block der synaptischen Transmitteraussch{\"u}ttung bei erh{\"o}hter Temperatur nicht reproduziert, jedoch durch R{\"u}ckkreuzungen der Nullmutante CspU1 gegen den Wildtyp w1118 wiederhergestellt werden. Das „Rescue"-Konstrukt scDNA1, welches die Grundlage f{\"u}r alle weiteren mutierten Formen von csp darstellt, rettete den larvalen temperatursensitiven Ph{\"a}notyp im csp-Nullmutantenhintergrund von CspU1 vollst{\"a}ndig. Larvale Mutanten der Linie SSP, bei denen der Cystein String durch einen Serin String ausgetauscht worden war (Serine-string protein), zeigten in {\"U}bereinstimmung mit den adulten Fliegen den bekannten temperatursensitiven Ph{\"a}notyp. Larvale Mutanten der Linie CLP (Cysteine-less protein) zeigten im Gegensatz zu adulten Tieren dieser Linie keinen temperatursensitiven Ph{\"a}notyp, sondern ein wildtypisches Verhalten. F{\"u}r die Mutante L\&\#8710;8, die im Nullmutantenhintergrund von CspU1 roc ein in der Linker-Dom{\"a}ne um acht Aminos{\"a}uren verk{\"u}rztes CSP-Protein exprimiert, wurden verschiedene elektrophysiologische Ph{\"a}notypen beobachtet: Larven der X-chromosomalen Linie zeigten den bekannten temperaturabh{\"a}ngigen Block der synaptischen Transmission. Larven der Insertionslinie f{\"u}r das 3. Chromosom zeigten keine Temperatursensitivit{\"a}t, sondern wildtypisches Verhalten. In immunhistochemischen Untersuchungen konnte f{\"u}r die X-chromosomale Linie eine deutlich schw{\"a}chere Expression des L\&\#8710;8-Proteins beobachtet werden. Larven der Linie C\&\#8710;27, die ein im C-terminalen Bereich von CSP um 27 Aminos{\"a}uren verk{\"u}rztes CSP-Protein exprimieren, im Nullmutantenhintergrund CspU1 roc konnten anhand des Ph{\"a}notyps in zwei Gruppen unterteilt werden. Unabh{\"a}ngig vom Insertionsort zeigte eine Gruppe den bekannten larvalen temperatursensitiven Ph{\"a}notyp. Die zweite Gruppe zeigte auch bei erh{\"o}hter Temperatur wildtypisches Verhalten. Im zweiten Teil der Arbeit wurde versucht, eine neue Deletionsmutante f{\"u}r csp durch Remobilisierung einer P-Insertion (P\#1617, flybase, Bloomington) im ersten Exon zu erzeugen, da in der Nullmutante CspU1 m{\"o}glicherweise auch benachbarte Gene betroffen sind. Nach {\"U}berpr{\"u}fung der erzeugten Mutanten durch Western und Southern Blot, immunhistochemische Experimente und elektrophysiologische Untersuchungen am Nerv-Muskel-Pr{\"a}parat 3. Larven konnte keine Deletionsmutante mit temperaturabh{\"a}ngigem Ph{\"a}notyp isoliert werden, die ausschließlich csp betraf.}, subject = {Taufliege}, language = {de} } @phdthesis{Reisch2003, author = {Reisch, Natasa}, title = {Das Cysteine-String-Protein in Drosophila melanogaster: Molekulare und funktionelle Analyse verschiedener CSP-Mutanten; Ein Modell zur r{\"a}umlich und zeitlich kontrollierten CSP-Expression}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-6291}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2003}, abstract = {Die Exozytose von Neurotransmittern und Peptiden w{\"a}hrend der Verarbeitung und Weiterleitung von Reizen im Nervensystem wird durch eine komplexe Maschinerie von Proteinen reguliert. Das konservierte Cysteine String Protein (CSP), das gebunden an synaptische und andere sekretorische Vesikel vorliegt, konnte in den vergangenen Jahren als Teil in diesen Prozess eingeordnet werden. Die Frage nach der genauen Funktion von CSP w{\"a}hrend der Exozytose ist allerdings weiterhin offen. CSP-Nullmutanten in Drosophila melanogaster zeigen temperatursensitive Paralyse und eine extrem verk{\"u}rzte Lebenserwartung, gepaart mit verminderter Fertilit{\"a}t. In larvalen Nerv-Muskel Pr{\"a}paraten kommt es bei Temperaturen {\"u}ber 29°C zu einem reversiblen Block der elektrophysiologisch messbaren synaptischen Transmission. Die Prim{\"a}rstruktur des Cysteine String Proteins kann in folgende konservierte Sequenzabschnitte unterteilt werden: eine N-terminale Protein Kinase A Phosphorylierungsstelle, eine Region mit Homologie zu einer charakteristischen Dom{\"a}ne von DnaJ-Proteinen (DnaJ-Dom{\"a}ne), einen als Linkerregion bezeichneten Abschnitt, eine cysteinreiche Sequenz, die bei Drosophila aus dem namensgebenden Strang von 11 aufeinanderfolgenden Cysteinen flankiert von 2 Cysteinpaaren besteht, und einen schw{\"a}cher konservierten C-Terminus, in dem sich auch einzelne Spleißvarianten unterscheiden. Versuche mit Vertebraten konnten zeigen, dass CSP in einem trimeren Komplex aus Hsc70/CSP/SGT vorkommt und bei der Exozytose wahrscheinlich als molekulares Co-Chaperon wirkt. Der Cysteinstrang liegt mehrfach palmityliert vor und ist f{\"u}r die Zielfindung des Proteins zur Vesikelmembran essentiell. In vorangegangenen Arbeiten wurde begonnen, bei Drosophila durch gezielte Mutagenese und Keimbahntransformation die Rolle des Cysteinstrangs, der Linkerregion und des C-Terminus f{\"u}r die Funktion des CSP zu analysieren. In der vorliegenden Dissertation wurden in transgenen Fliegen die Eigenschaften von Isoformen mit vier unterschiedlich mutierten Varianten des Cysteinstrangs (CSLP, SCSP, CLP, SSP) und je Deletionen in der Linkerregion (L\&\#916;8) und im C-terminalen Bereich (C\&\#916;27) charakterisiert. Die subzellul{\"a}re Verteilung und ver{\"a}nderte Membranbindungseigenschaften dieser Proteine wurden mithilfe von Membranfraktionierung und Glycerindichtegradienten von Homogenaten der transgenen Mutanten aufgezeigt. Die Isoformen CLP und SSP sind aufgrund der fehlenden Palmitylierung nicht an die Membran der synaptischen Vesikel gebunden, w{\"a}hrend die Isoform CSLP sowohl in der Vesikelmembranfraktion als auch als l{\"o}sliches Protein nachgewiesen werden kann. Die flankierenden Cysteinpaare und die verbliebenen Cysteine in den Isoformen CSLP und SCSP erf{\"u}llen offenbar noch teilweise die Aufgabe des Cysteinstrangs bei der Zielfindung der Proteine. Eine Depalmitylierung mit Hydroxylamin l{\"o}st das verk{\"u}rzte SCSP Protein ebensowenig aus der Membran wie das intakte CSP. Die Ergebnisse dieser Untersuchungen stehen im Einklang mit immunhistochemischen Befunden. Die Deletion bzw. Substitution der zentralen 11 Cysteine in den Isoformen CSLP, CLP und SSP {\"a}ußert sich in den transgenen Fliegen in einer gleichm{\"a}ßigeren Verteilung der Proteine, die nicht mehr wie im Wildtyp auf das synaptische Neuropil beschr{\"a}nkt ist. Keine der Isoformen mit ver{\"a}ndertem Cysteinstrang ist in der Lage die Funktion des wildtypischen CSP zu {\"u}bernehmen, da die adulten transgenen Fliegen den temperatursensitiven Ph{\"a}notyp und eine kurze Lebensdauer {\"a}hnlich den Csp-Nullmutanten zeigen. Die Proteinisoformen L\&\#916;8 und C\&\#916;27 dagegen lassen in den biochemischen Analysen keine Abweichung vom Wildtyp erkennen und weisen auch eine wildtypische Verteilung in Kryostat-Gehirnschnitten auf. Die Deletion in der Linkerregion in der Isoform L\&\#916;8 scheint die Funktion des CSPs allerdings einzuschr{\"a}nken, da die entsprechenden transgenen Fliegen bereits bei 38°C, wildtypische Tiere dagegen erst bei 40°C paralysieren. Die in der Literatur beschriebene Interaktion zwischen Drosophila CSP und Syntaxin konnte f{\"u}r die transgen exprimierte gr{\"o}ßte CSP Isoform CSP1 in Immunpr{\"a}zipitationsexperimenten mit Drosophila-Kopfhomogenat best{\"a}tigt werden. Die Frage nach einer Interaktion zwischen Syntaxin und den anderen untersuchten mutierten CSP-Isoformen bleibt dagegen offen. Der zweite Teil dieser Arbeit befasst sich mit dem Versuch, mithilfe des UAS/Gal4- und des Flippase/FRT -Systems die CSP-Expression r{\"a}umlich und zeitlich zu kontrollieren. Dazu wurde aufgrund von Datenbankangaben eine minimale FRT-Sequenz aus Oligonukleotiden mit entsprechenden Linkern konstruiert. Das gesamte Csp-Gen beziehungsweise die Csp cDNA1 einschließlich der regulatorischen Sequenzen wurde zwischen zwei gleichgerichteten FRT-Sequenzen pW8 eingebracht. Die Keimbahntransformation f{\"u}hrte zu mehreren transgenen Fliegenlinien. Nach aufwendigen Kreuzungen mit Gal4-, UAS-Flippase- und Csp-Null-Linien entstanden Fliegen im CSP-Nullhintergrund, welche eine durch die verwendete Gal4-Linie definierte Expression von Flippase zeigten und das FRT-Konstrukt trugen. Diese Fliegen sollten in Flippase positiven Bereichen keine CSP-Expression mehr zeigen. Verhaltensanalysen an solchen Tieren bei normaler und erh{\"o}hter Temperatur k{\"o}nnten dann Aufschluss {\"u}ber die Funktion der Zellen ohne CSP-Expression geben. Leider konnten die erwarteten Ver{\"a}nderungen in der CSP-Expression nicht beobachtet werden, obwohl alle Konstrukte sich nach einer {\"U}berpr{\"u}fung als intakt erwiesen haben. Die Ursache f{\"u}r die fehlende Rekombination zwischen den FRT-Sequenzen ist m{\"o}glicherweise in einer zu geringen L{\"a}nge dieser Zielsequenz der Flippase zu suchen. Im dritten Abschnitt der Arbeit wird der Csp-Genlokus und seine benachbarten Gene vorgestellt, und die m{\"o}glichen Auswirkungen der Deletionen in den zur Verf{\"u}gung stehenden Mutanten CspU1, CspU1w und CspK16 diskutiert. Aufgrund der Daten aus dem Drosophila Genomprojekt lag die Spekulation nahe, dass der Ph{\"a}notyp der Deletionsmutanten auch durch eine ver{\"a}nderte Expression der benachbarten Gene stromab- und stromaufw{\"a}rts des Csp Gens beeinflusst werden k{\"o}nnte. Die Auswertung eines Northern Blots von PolyA+-RNA adulter Fliegen, sowie einfache Verhaltenstests an vorliegenden und neu generierten CSP-Nullmutanten konnten diesen Verdacht allerdings nicht best{\"a}tigen.}, subject = {Taufliege}, language = {de} }