@article{HerterStauchGallantetal.2015, author = {Herter, Eva K. and Stauch, Maria and Gallant, Maria and Wolf, Elmar and Raabe, Thomas and Gallant, Peter}, title = {snoRNAs are a novel class of biologically relevant Myc targets}, series = {BMC Biology}, volume = {13}, journal = {BMC Biology}, number = {25}, doi = {10.1186/s12915-015-0132-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-124956}, year = {2015}, abstract = {Background Myc proteins are essential regulators of animal growth during normal development, and their deregulation is one of the main driving factors of human malignancies. They function as transcription factors that (in vertebrates) control many growth- and proliferation-associated genes, and in some contexts contribute to global gene regulation. Results We combine chromatin immunoprecipitation-sequencing (ChIPseq) and RNAseq approaches in Drosophila tissue culture cells to identify a core set of less than 500 Myc target genes, whose salient function resides in the control of ribosome biogenesis. Among these genes we find the non-coding snoRNA genes as a large novel class of Myc targets. All assayed snoRNAs are affected by Myc, and many of them are subject to direct transcriptional activation by Myc, both in Drosophila and in vertebrates. The loss of snoRNAs impairs growth during normal development, whereas their overexpression increases tumor mass in a model for neuronal tumors. Conclusions This work shows that Myc acts as a master regulator of snoRNP biogenesis. In addition, in combination with recent observations of snoRNA involvement in human cancer, it raises the possibility that Myc's transforming effects are partially mediated by this class of non-coding transcripts.}, language = {en} } @article{SanzMorenoFuhrmannWolfetal.2014, author = {Sanz-Moreno, Adrian and Fuhrmann, David and Wolf, Elmar and von Eyss, Bj{\"o}rn and Eilers, Martin and Els{\"a}sser, Hans-Peter}, title = {Miz1 Deficiency in the Mammary Gland Causes a Lactation Defect by Attenuated Stat5 Expression and Phosphorylation}, series = {PLOS ONE}, volume = {9}, journal = {PLOS ONE}, number = {2}, doi = {10.1371/journal.pone.0089187}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-117286}, pages = {e89187}, year = {2014}, abstract = {Miz1 is a zinc finger transcription factor with an N-terminal POZ domain. Complexes with Myc, Bcl-6 or Gfi-1 repress expression of genes like Cdkn2b (p15(Ink4)) or Cd-kn1a (p21(Cip1)). The role of Miz1 in normal mammary gland development has not been addressed so far. Conditional knockout of the Miz1 POZ domain in luminal cells during pregnancy caused a lactation defect with a transient reduction of glandular tissue, reduced proliferation and attenuated differentiation. This was recapitulated in vitro using mouse mammary gland derived HC11 cells. Further analysis revealed decreased Stat5 activity in Miz1 Delta POZ mammary glands and an attenuated expression of Stat5 targets. Gene expression of the Prolactin receptor (PrlR) and ErbB4, both critical for Stat5 phosphorylation (pStat5) or pStat5 nuclear translocation, was decreased in Miz1 Delta POZ females. Microarray, ChIP-Seq and gene set enrichment analysis revealed a down-regulation of Miz1 target genes being involved in vesicular transport processes. Our data suggest that deranged intracellular transport and localization of PrlR and ErbB4 disrupt the Stat5 signalling pathway in mutant glands and cause the observed lactation phenotype.}, language = {en} }