@article{MrestaniPauliKollmannsbergeretal.2021, author = {Mrestani, Achmed and Pauli, Martin and Kollmannsberger, Philip and Repp, Felix and Kittel, Robert J. and Eilers, Jens and Doose, S{\"o}ren and Sauer, Markus and Sir{\´e}n, Anna-Leena and Heckmann, Manfred and Paul, Mila M.}, title = {Active zone compaction correlates with presynaptic homeostatic potentiation}, series = {Cell Reports}, volume = {37}, journal = {Cell Reports}, number = {1}, doi = {10.1016/j.celrep.2021.109770}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-265497}, pages = {109770}, year = {2021}, abstract = {Neurotransmitter release is stabilized by homeostatic plasticity. Presynaptic homeostatic potentiation (PHP) operates on timescales ranging from minute- to life-long adaptations and likely involves reorganization of presynaptic active zones (AZs). At Drosophila melanogaster neuromuscular junctions, earlier work ascribed AZ enlargement by incorporating more Bruchpilot (Brp) scaffold protein a role in PHP. We use localization microscopy (direct stochastic optical reconstruction microscopy [dSTORM]) and hierarchical density-based spatial clustering of applications with noise (HDBSCAN) to study AZ plasticity during PHP at the synaptic mesoscale. We find compaction of individual AZs in acute philanthotoxin-induced and chronic genetically induced PHP but unchanged copy numbers of AZ proteins. Compaction even occurs at the level of Brp subclusters, which move toward AZ centers, and in Rab3 interacting molecule (RIM)-binding protein (RBP) subclusters. Furthermore, correlative confocal and dSTORM imaging reveals how AZ compaction in PHP translates into apparent increases in AZ area and Brp protein content, as implied earlier.}, language = {en} } @article{PaulPauliEhmannetal.2015, author = {Paul, Mila M. and Pauli, Martin and Ehmann, Nadine and Hallermann, Stefan and Sauer, Markus and Kittel, Robert J. and Heckmann, Manfred}, title = {Bruchpilot and Synaptotagmin collaborate to drive rapid glutamate release and active zone differentiation}, series = {Frontiers in Cellular Neuroscience}, volume = {9}, journal = {Frontiers in Cellular Neuroscience}, number = {29}, doi = {10.3389/fncel.2015.00029}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148988}, year = {2015}, abstract = {The active zone (AZ) protein Bruchpilot (Brp) is essential for rapid glutamate release at Drosophila melanogaster neuromuscular junctions (NMJs). Quantal time course and measurements of action potential-waveform suggest that presynaptic fusion mechanisms are altered in brp null mutants (brp\(^{69}\)). This could account for their increased evoked excitatory postsynaptic current (EPSC) delay and rise time (by about 1 ms). To test the mechanism of release protraction at brp\(^{69}\) AZs, we performed knock-down of Synaptotagmin-1 (Syt) via RNAi (syt\(^{KD}\)) in wildtype (wt), brp\(^{69}\) and rab3 null mutants (rab3\(^{rup}\)), where Brp is concentrated at a small number of AZs. At wt and rab3\(^{rup}\) synapses, syt\(^{KD}\) lowered EPSC amplitude while increasing rise time and delay, consistent with the role of Syt as a release sensor. In contrast, syt\(^{KD}\) did not alter EPSC amplitude at brp\(^{69}\) synapses, but shortened delay and rise time. In fact, following syt\(^{KD}\), these kinetic properties were strikingly similar in wt and brp\(^{69}\), which supports the notion that Syt protracts release at brp\(^{69}\) synapses. To gain insight into this surprising role of Syt at brp\(^{69}\) AZs, we analyzed the structural and functional differentiation of synaptic boutons at the NMJ. At tonic type Ib motor neurons, distal boutons contain more AZs, more Brp proteins per AZ and show elevated and accelerated glutamate release compared to proximal boutons. The functional differentiation between proximal and distal boutons is Brp-dependent and reduced after syt\(^{KD}\). Notably, syt\(^{KD}\) boutons are smaller, contain fewer Brp positive AZs and these are of similar number in proximal and distal boutons. In addition, super-resolution imaging via dSTORM revealed that syt\(^{KD}\) increases the number and alters the spatial distribution of Brp molecules at AZs, while the gradient of Brp proteins per AZ is diminished. In summary, these data demonstrate that normal structural and functional differentiation of Drosophila AZs requires concerted action of Brp and Syt.}, language = {en} } @phdthesis{Scholz2017, author = {Scholz, Nicole}, title = {Genetic analyses of sensory and motoneuron physiology in Drosophila melanogaster}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-123249}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {During my PhD I studied two principal biological aspects employing Drosophila melanogaster. Therefore, this study is divided into Part I and II. Part I: Bruchpilot and Complexin interact to regulate synaptic vesicle tethering to the active zone cytomatrix At the presynaptic active zone (AZ) synaptic vesicles (SVs) are often physically linked to an electron-dense cytomatrix - a process referred to as "SV tethering". This process serves to concentrate SVs in close proximity to their release sites before contacting the SNARE complex for subsequent fusion (Hallermann and Silver, 2013). In Drosophila, the AZ protein Bruchpilot (BRP) is part of the proteinous cytomatrix at which SVs accumulate (Kittel et al., 2006b; Wagh et al., 2006; Fouquet et al., 2009). Intriguingly, truncation of only 1\% of the C-terminal region of BRP results in a severe defect in SV tethering to this AZ scaffold (hence named brpnude; Hallermann et al., 2010b). Consistent with these findings, cell-specific overexpression of a C-terminal BRP fragment, named mBRPC-tip (corresponds to 1\% absent in brpnude; m = mobile) phenocopied the brpnude mutant in behavioral and functional experiments. These data indicate that mBRPC-tip suffices to saturate putative SV binding sites, which induced a functional tethering deficit at motoneuronal AZs. However, the molecular identity of the BRP complement to tether SVs to the presynaptic AZ scaffold remains unknown. Moreover, within larval motoneurons membrane-attached C-terminal portions of BRP were sufficient to tether SVs to sites outside of the AZ. Based on this finding a genetic screen was designed to identify BRP interactors in vivo. This screen identified Complexin (CPX), which is known to inhibit spontaneous SV fusion and to enhance stimulus evoked SV release (Huntwork and Littleton, 2007; Cho et al., 2010; Martin et al., 2011). However, so far CPX has not been associated with a function upstream of priming/docking and release of SVs. This work provides morphological and functional evidence, which suggests that CPX promotes recruitment of SVs to the AZ and thereby curtails synaptic short-term depression. Together, the presented findings indicate a functional interaction between BRP and CPX at Drosophila AZs. Part II: The Adhesion-GPCR Latrophilin/CIRL shapes mechanosensation The calcium independent receptor of α-latrotoxin (CIRL), also named Latrophilin, represents a prototypic Adhesion class G-protein coupled-receptor (aGPCR). Initially, Latrophilin was identified based on its capacity to bind the α-component of latrotoxin (α-LTX; Davletov et al., 1996; Krasnoperov et al., 1996), which triggers massive exocytotic activity from neurons of the peripheral nervous system (Scheer et al., 1984; Umbach et al., 1998; Orlova et al., 2000). As a result Latrophilin is considered to play a role in synaptic transmission. Later on, Latrophilins have been associated with other biological processes including tissue polarity (Langenhan et al., 2009), fertility (Pr{\"o}mel et al., 2012) and synaptogenesis (Silva et al., 2011). However, thus far its subcellular localization and the identity of endogenous ligands, two aspects crucial for the comprehension of Latrophilin's in vivo function, remain enigmatic. Drosophila contains only one latrophilin homolog, named dCirl, whose function has not been investigated thus far. This study demonstrates abundant dCirl expression throughout the nervous system of Drosophila larvae. dCirlKO animals are viable and display no defects in development and neuronal differentiation. However, dCirl appears to influence the dimension of the postsynaptic sub-synaptic reticulum (SSR), which was accompanied by an increase in the postsynaptic Discs-large abundance (DLG). In contrast, morphological and functional properties of presynaptic motoneurons were not compromised by the removal of dCirl. Instead, dCirl is required for the perception of mechanical challenges (acoustic-, tactile- and proprioceptive stimuli) through specialized mechanosensory devices, chordotonal organs (Eberl, 1999). The data indicate that dCirl modulates the sensitivity of chordotonal neurons towards mechanical stimulation and thereby adjusts their input-output relation. Genetic interaction analyses suggest that adaption of the molecular mechanotransduction machinery by dCirl may underlie this process. Together, these results uncover an unexpected function of Latrophilin/dCIRL in mechanosensation and imply general modulatory roles of aGPCR in mechanoception.}, subject = {Drosophila}, language = {en} } @phdthesis{Dippacher2011, author = {Dippacher, Sonja}, title = {Morphologische und molekularbiologische Untersuchungen zur Bedeutung der Serin-Threonin-Proteinkinase SRPK79D in Drosophila melanogaster}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-70937}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Die intakte Signal{\"u}bertragung im animalischen Nervensystem erfordert eine an richtiger Stelle ausgebildete funktionsf{\"a}hige Synapse zwischen zwei Nervenzellen bzw. zwischen Nerv und Muskel. In der vorliegenden Arbeit wurde eine Mutante von Drosophila melanogaster untersucht, bei der es zu Ver{\"a}nderungen der Verteilung eines wichtigen Organisationsproteins der synaptischen aktiven Zone kommt. Ein wichtiges Ergebnis der Untersuchungen ist die Beobachtung, dass es in der Mutante zu einer ektopen Ausbildung von Elementen aktiver Zonen in Axonen kommt. In den Arbeitsgruppen von E. Buchner und S. Sigrist ist bereits das Protein Bruchpilot (BRP) charakterisiert worden, das Bestandteil der pr{\"a}synaptischen Ribbons, bei Drosophila als T-bars bezeichnet, ist. Bei der Suche nach Interaktionspartnern von BRP, ist eine Serin-Arginin-Protein spezifische Kinase SRPK79D entdeckt worden, die offenbar an der Regulation des Aufbaus der Tbars beteiligt ist (Nieratschker et al., 2009). Es gibt vier verschiedene Isoformen der Kinase. Werden nur zwei Isoformen der Kinase (SRPK79D-RB und -RE) exprimiert bzw. das Gen der Kinase komplett ausgeschaltet, findet man Ansammlungen von BRP als immunreaktive Aggregate in der Immunfluoreszenz- F{\"a}rbung von larvalen Motoneuron-Axonen (Nieratschker, 2008). Es ist unser {\"u}bergeordnetes Ziel, die Funktion und den molekularen Signalweg der Kinase SRPK79D zu entschl{\"u}sseln. Ein Ziel der vorliegenden Arbeit war es, PB-Protein in Reinform f{\"u}r eine Affinit{\"a}tsreinigung eines PB-Antik{\"o}rpers zu gewinnen, um in nachfolgenden Untersuchungen die Lokalisation dieser Kinase-Isoform zu untersuchen. Die Proteinreinigung war erfolgreich, aber es gelang nicht, eine f{\"u}r eine Affinit{\"a}tsreinigung ausreichende Menge des Proteins zu isolieren. Ein weiterer Versuch, Lokalisationsuntersuchungen zur Expression der Kinase in Drosophila- Embryonen durchzuf{\"u}hren, war ebenfalls nicht erfolgreich. Obwohl die Herstellung einer f{\"u}r die SRPK79D mRNA spezifischen RNA Sonde f{\"u}r die in-Situ-Hybridisierung gelang, war die Sensitivit{\"a}t dieser Sonde nicht hoch genug, um die Lokalisation vornehmen zu k{\"o}nnen. Eindeutige und aufschlussreiche Ergebnisse dagegen ergab die Untersuchung der Ultrastruktur der BRP-Ansammlungen in den larvalen Motornerven. Als deren Korrelat fanden sich elektronenmikroskopisch charakteristische Ansammlungen elektronendichter intraaxonaler Strukturen, deren Form {\"A}hnlichkeiten zu T-bars aufwies und die von Vesikeln umgeben waren. Die elektronendichten Strukturen zeigten zahlreiche Formvariationen, die wie Ansammlungen von T-bars nebeneinander bzw. „miteinander verklebte" T-bars oder wie zerst{\"o}rte T-bars aussahen. In einer nachfolgenden Studie wurde durch eine immun-elektronenmikroskopische Untersuchung gezeigt, dass diese Strukturen in der Tat BRP enthalten (Nieratschker et al., 2009). Ergebnis der Untersuchungen der vorliegenden Arbeit war der Nachweis, dass prinzipiell {\"a}hnliche Aggregate auch im Wildtyp gelegentlich gefunden werden, dass sie aber in Mutanten signifikant h{\"a}ufiger vorkommen und auch einen signifikant h{\"o}heren Durchmesser aufweisen. Doppelimmunreaktionen mit Antik{\"o}rpern, die den C- bzw. N-terminalen Bereich von BRP erkennen, belegten dar{\"u}ber hinaus, dass in den Aggregaten das vollst{\"a}ndige BRP-Protein vorliegt. Angeregt durch die Ultrastrukturbefunde von mit den elektronendichten Strukturen in den Aggregaten assoziierten Vesikeln wurde in weiteren Doppelimmunreaktionen untersucht, ob ein typisches Protein synaptischer Vesikel neuromuskul{\"a}rer Synapsen in Drosophila, der vesikul{\"a}re Glutamattransporter (DVGlut), in den BRP-Ansammlungen nachweisbar ist. W{\"a}hrend Kolokalisation von BRP und DVGlut in aktiven Zonen pr{\"a}synaptischer Boutons nachgewiesen werden konnte, war der Vesikelmarker in BRP-Aggregaten nicht kolokalisiert. Die Ergebnisse belegen, dass die Kinase SRPK79D f{\"u}r die Vermeidung einer ektopen Bildung von BRP-enthaltenden, elektronenmikroskopisch atypischen aktiven Zonen {\"a}hnelnden Strukturen in larvalen Motoneuronaxonen notwendig ist. Die in diesen Aggregaten regelm{\"a}ßig zu beobachtenden Vesikel {\"a}hneln morphologisch synaptischen Vesikeln, besitzen aber keine daf{\"u}r typischen Vesikelmarker.}, subject = {Bruchpilot}, language = {de} } @phdthesis{Jauch2010, author = {Jauch, Mandy}, title = {Die Serin/Arginin Proteinkinase 79D (SRPK79D) von Drosophila melanogaster und ihre Rolle bei der Bildung Aktiver Zonen von Synapsen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-53974}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {Synapsen als Stellen der Kommunikation zwischen Neuronen besitzen spezialisierte Bereiche - Aktive Zonen (AZs) genannt -, die aus einem hoch komplexen Netzwerk von Proteinen aufgebaut sind und die Maschinerie f{\"u}r den Prozess der Neurotransmitter-Aussch{\"u}ttung und das Vesikel-Recycling beinhalten. In Drosophila ist das Protein Bruchpilot (BRP) ein wichtiger Baustein f{\"u}r die T-f{\"o}rmigen B{\"a}nder („T-Bars") der pr{\"a}synaptischen Aktiven Zonen. BRP ist notwendig f{\"u}r eine intakte Struktur der Aktiven Zone und eine normale Exocytose von Neurotransmitter-Vesikeln. Auf der Suche nach Mutationen, welche die Verteilung von Bruchpilot im Gewebe beeintr{\"a}chtigen, wurde eine P-Element-Insertion im Gen CG11489 an der Position 79D identifiziert, welches eine Kinase kodiert, die einen hohen Grad an Homologie zur Familie der SR Proteinkinasen (SRPKs) von S{\"a}ugern aufweist. Die Mitglieder dieser Familie zeichnen sich durch eine evolution{\"a}r hoch konservierte zweigeteilte Kinasedom{\"a}ne aus, die durch eine nicht konservierte Spacer-Sequenz unterbrochen ist. SRPKs phosphorylieren SR-Proteine, die zu einer evolution{\"a}r hoch konservierten Familie Serin/Arginin-reicher Spleißfaktoren geh{\"o}ren und konstitutive sowie alternative Spleißprozesse steuern und damit auf post-transkriptioneller Ebene die Genexpression regulieren. Mutation des Srpk79D-Gens durch die P-Element-Insertion (Srpk79DP1) oder eine Deletion im Gen (Srpk79DVN Nullmutante) f{\"u}hrt zu auff{\"a}lligen BRP-Akkumulationen in larvalen und adulten Nerven. In der vorliegenden Arbeit wird gezeigt, dass diese BRP-Akkumulationen auf Ultrastruktur-Ebene ausgedehnten axonalen Agglomeraten elektronendichter B{\"a}nder entsprechen und von klaren Vesikeln umgeben sind. Charakterisierung durch Immuno-Elektronenmikroskopie ergab, dass diese Strukturen BRP-immunoreaktiv sind. Um die Bildung BRP-enthaltender Agglomerate in Axonen zu verhindern und damit eine intakte Gehirnfunktion zu gew{\"a}hrleisten, scheint die SRPK79D nur auf niedrigem Niveau exprimiert zu werden, da die endogene Kinase mit verschiedenen Antik{\"o}rpern nicht nachweisbar war. Wie in anderen Arbeiten gezeigt werden konnte, ist die Expression der PB-, PC- oder PF-Isoform der vier m{\"o}glichen SRPK79D-Varianten, die durch alternativen Transkriptionsstart in Exon eins beziehungsweise drei und alternatives Spleißen von Exon sieben zustande kommen, zur Rettung des Ph{\"a}notyps der BRP-Akkumulation im Srpk79DVN Nullmutanten-Hintergrund ausreichend. Zur Charakterisierung der Rescue-Eigenschaften der SRPK79D-PE-Isoform wurde mit der Klonierung der cDNA in einen UAS-Vektor begonnen. Offenbar beruht die Bildung der axonalen BRP-Agglomerate nicht auf einer {\"U}berexpression von BRP in den betroffenen Neuronen, denn auch bei reduzierter Expression des BRP-Proteins im Srpk79DVN Nullmutanten-Hintergrund entstehen die BRP-Agglomerate. In K{\"o}pfen der Srpk79DVN Nullmutante ist die Gesamtmenge an Bruchpilot-Protein im Vergleich zum Wildtyp nicht deutlich ver{\"a}ndert. Auch die auf Protein-Ebene untersuchte Expression der verschiedenen Isoformen der pr{\"a}synaptischen Proteine Synapsin, Sap47 und CSP weicht in der Srpk79DVN Nullmutante nicht wesentlich von der Wildtyp-Situation ab, sodass sich keine Hinweise auf ver{\"a}ndertes Spleißen der entsprechenden pr{\"a}-mRNAs ergeben. Jedes der sieben bekannten SR-Proteine von Drosophila ist ein potentielles Zielprotein der SRPK79D. Knock-down-Experimente f{\"u}r die drei hier untersuchten SR-Proteine SC35, X16/9G8 und B52/SRp55 im gesamten Nervensystem durch RNA-Interferenz zeigten allerdings keinen Effekt auf die Verteilung von BRP im Gewebe. Hinsichtlich der Flugf{\"a}higkeit der Tiere hat die Srpk79DVN Nullmutation keinen additiven Effekt zum Knock-down des BRP-Proteins, denn die Doppelmutanten zeigten bei der Bestimmung des Anteils an flugunf{\"a}higen Tieren vergleichbare Werte wie die Einzelmutanten, die entweder die Nullmutation im Srpk79D-Gen trugen, oder BRP reduziert exprimierten. Vermutlich sind Bruchpilot und die SR Proteinkinase 79D somit Teil desselben Signalwegs. Durch Doppelf{\"a}rbungen mit Antik{\"o}rpern gegen BRP und CAPA-Peptide wurde abschließend entdeckt, dass Bruchpilot auch im Median- und Transvers-Nervensystem (MeN/TVN) von Drosophila zu finden ist, welche die Neuroh{\"a}mal-Organe beherbergen. Aufgabe dieser Organe ist die Speicherung und Aussch{\"u}ttung von Neuropeptid-Hormonen. Daher ist zu vermuten, dass das BRP-Protein neben Funktionen bei der Neurotransmitter-Exocytose m{\"o}glicherweise eine Rolle bei der Aussch{\"u}ttung von Neuropeptiden spielt. Anders als in den Axonen der larvalen Segmental- und Intersegmentalnerven der Srpk79DVN Nullmutante, die charakteristische BRP-Agglomerate aufweisen, hat die Mutation des Srpk79D-Gens in den Axonen der Va-Neurone, die das MeN/TVN-System bilden, keinen sichtbaren Effekt auf die Verteilung von Brp, denn das Muster bei F{\"a}rbung gegen BRP weist keine deutlichen Ver{\"a}nderungen zum Wildtyp auf.}, subject = {Taufliege}, language = {de} } @phdthesis{Schubert2010, author = {Schubert, Alice}, title = {Immunhistochemische und funktionelle Charakterisierung der Serin/Arginin-Proteinkinase SRPK79D mit Identifizierung von Interaktionspartnern in Drosophila melanogaster}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-53841}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {Auf der Suche nach Mutanten mit einer vom Wildtyp abweichenden Verteilung des Aktive Zone-Proteins Bruchpilot wurde die Serin/Arginin-Proteinkinase SRPK79D identifiziert. Hier zeigte sich, dass die Mutation im Srpk79D-Gen zu einer Agglomeration von Bruchpilot in den larvalen segmentalen und intersegmentalen Nerven f{\"u}hrt. In der vorliegenden Arbeit sollte die SRPK79D genauer charakterisiert werden. Nach Pr{\"a}adsorptionen und Affinit{\"a}tsreinigungen von in einer fr{\"u}heren Arbeit erzeugten Antiseren, gelang es die Lokalisation der {\"u}berexprimierten SRPK79D-GFP-Isoformen zu bestimmen. Dabei zeigte sich, dass keines der Antiseren die endogene Kinase im Western Blot oder immunhistocheimisch detektieren konnte. Dies legt den Schluss nahe, dass die Expression der SRPK79D in einer geringen Konzentration erfolgt. Es war jedoch m{\"o}glich die endogene SRPK79D-PC-Isoform mittels einer Immunpr{\"a}zipitation soweit anzureichern, dass sie im Western Blot nachweisbar war. F{\"u}r die SRPK79D-PB-Isoform gelang dies allerdings nicht. Anhand von larvalen Nerv-Muskel-Pr{\"a}paraten konnte gezeigt werden, dass die panneural {\"u}berexprimierte SRPK79D-PC-GFP-Isoform an die Aktiven Zone transportiert wird und dort mit Bruchpilot, sowie den Interaktionspartnern von Bruchpilot Liprin-α und Rab3 kolokalisiert. Außerdem liegt sie diffus im Zytoplasma von neuronalen Zellk{\"o}rpern vor. In adulten Gehirnen lokalisiert die transgen {\"u}berexprimierte SRPK79D-PC-GFP im Fanshaped body, Ringkomplex und in neuronalen Zellk{\"o}rpern. Die panneural {\"u}berexprimierte SRPK79D-PB-GFP-Isoform liegt im larvalen und adulten Gehirn lokal im Zytoplasma der Perikaryen akkumuliert vor und wird nicht an die Aktive Zone transportiert. Das PB-Antiserum erkennt im adulten Gehirn neuronale Zellk{\"o}rper und das Neuropil in der Calyxregion der Pilzk{\"o}rper. Immunhistochemische F{\"a}rbungen von larvalen Nerv-Muskel-Pr{\"a}paraten mit verschiedenen Antik{\"o}rpern gegen neuronale Proteine belegen, dass die Agglomerate in der Srpk79D-Mutante f{\"u}r Bruchpilot spezifisch sind. Es konnten bisher keine weiteren Komponenten der Agglomerate detektiert werden. Auch ein genereller axonaler Defekt konnte durch F{\"a}rbungen gegen CSP, Synaptotagmin und Experimenten mit dem Mitochondrienfarbstoff MitoTracker® FM Green ausgeschlossen werden. Die quantitative Auswertung der Pr{\"a}parate zeigte, dass die Morphologie der synaptischen Boutons und die Zahl der Aktiven Zonen durch die Mutation im Srpk79D-Gen nicht beeinflusst werden. Um gesicherte Kenntnis dar{\"u}ber zu erlangen, ob die Mutation im Srpk79D-Gen die beobachteten Ph{\"a}notypen verursacht, wurden Rettungsexperimente durchgef{\"u}hrt. Es konnte sowohl f{\"u}r das hypomorphe Srpk79DP1-Allel, als auch f{\"u}r die Nullmutante Srpk79DVN eine nahezu vollst{\"a}ndige Rettung des Agglomerat-Ph{\"a}notyps mit der panneural exprimierten SRPK79D-PF- oder der SRPK79D-PB-Isoform erreicht werden. Aus diesen Ergebnissen folgt, dass beide Isoformen der SRPK79D in der Lage sind den Bruchpilot-Agglomerat-Ph{\"a}notyp zu retten, die Rettung der Verhaltensdefizite jedoch alle Isoformgruppen ben{\"o}tigen. Um zu untersuchen, ob der Agglomerations-Ph{\"a}notyp der Srpk79D-Mutanten auf einer {\"U}berexpression des Bruchpilotgens oder auf Fehlspleißen seiner pr{\"a}-mRNA beruht, wurden Immunpr{\"a}zipitationen, semiquantitative RT-PCRs und Real Time-PCRs durchgef{\"u}hrt. Ausgehend von den Ergebnissen kann eine m{\"o}gliche {\"U}berexpression bzw. Spleißdefekte von Bruchpilot weitgehend ausgeschlossen werden. Die simultane {\"U}berexpression von SRPK79D und Bruchpilot konnte den Ph{\"a}notyp der Bruchpilot-{\"U}berexpression nicht retten. Anhand der stimulated emission depletion-Mikroskopie konnte gezeigt werden, dass die gebildeten Agglomerate das charakteristische Donut-f{\"o}rmige Muster der T-bars zeigen und wahrscheinlich als fusionierte Ketten von T-bars in den larvalen Nerven vorliegen. Beim in vivo Imaging Versuch konnte demonstriert werden, dass das verk{\"u}rzte Bruchpilot-D3-Strawberry in die Bruchpilot-Agglomerate der Srpk79D-Nullmutante eingebaut wird und dass gr{\"o}ßere Agglomerate unbewegt im Nerv verharren. Der anterograde und retrograde Transport kleinerer Agglomerate konnte verzeichnet werden. Bei CytoTrap-Yeast-two-hybrid-Experimenten konnten f{\"u}r die SRPK79D-PB Isoform vier potentielle Interaktionspartner identifiziert werden: das Hitzeschockprotein Hsp70Bbb, die mitochondriale NADH-Dehydrogenase mt:ND5, das large ribosomal RNA Gen in Mitochondrien und das am Spleißen beteiligte Protein 1.3CC/Caper. Die Sequenzierung zeigte, dass nur das letzte Exon von Caper im pMyr-Vektor vorliegt. Der f{\"u}r die PC-Isoform durchgef{\"u}hrte CytoTrap-Versuch ergab nur Temperatur-Revertanten. SR-Proteinkinasen phosphorylieren die RS-Dom{\"a}ne von SR-Proteinen und sind dadurch an der Regulation des konstitutiven und alternativen Spleißens beteiligt. Somit stellen die acht identifizierten SR-Proteine in Drosophila potentielle Interaktionspartner der SRPK79D dar. Die durch RNAi-vermittelte Reduktion von sieben SR-Proteinen f{\"u}hrte zu keiner Agglomeration von Bruchpilot. Jedoch f{\"u}hrte die RNAi-vermittelte Reduktion des SR-Proteins Spleißfaktor 2 (SF2) zu kleineren Bruchpilot-Agglomeraten in den axonalen Nerven. SF2 ist selbst kein Bestandteil der Agglomerate der Srpk79D-Nullmutante. Die {\"U}berexpression von SF2 f{\"u}hrt wahrscheinlich zu einem axonalen Transportdefekt, wie die F{\"a}rbung gegen das Cysteine string protein zeigte. Weiterhin f{\"u}hrt die {\"U}berexpression zu einer Akkumulation von SF2 in larvalen Axonen und im adulten Gehirn der Fliegen. SF2 ist nicht nur in Zellkernen s{\"a}mtlicher Zellen nachweisbar, sondern es konnte auch ein spezifisches Signal im subsynaptischen Retikulum der Postsynapse detektiert werden, wie die F{\"a}rbungen gegen Disc large best{\"a}tigten.}, subject = {Taufliege}, language = {de} } @phdthesis{Knapek2010, author = {Knapek, Stephan}, title = {Synapsin and Bruchpilot, two synaptic proteins underlying specific phases of olfactory aversive memory in Drosophila melanogaster}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-49726}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {Memory is dynamic: shortly after acquisition it is susceptible to amnesic treatments, gets gradually consolidated, and becomes resistant to retrograde amnesia (McGaugh, 2000). Associative olfactory memory of the fruit fly Drosophila melanogaster also shows these features. After a single associative training where an odor is paired with electric shock (Quinn et al., 1974; Tully and Quinn, 1985), flies form an aversive odor memory that lasts for several hours, consisting of qualitatively different components. These components can be dissociated by mutations, their underlying neuronal circuitry and susceptibility to amnesic treatments (Dubnau and Tully, 1998; Isabel et al., 2004; Keene and Waddell, 2007; Masek and Heisenberg, 2008; Xia and Tully, 2007). A component that is susceptible to an amnesic treatment, i.e. anesthesia-sensitive memory (ASM), dominates early memory, but decays rapidly (Margulies et al., 2005; Quinn and Dudai, 1976). A consolidated anesthesia-resistant memory component (ARM) is built gradually within the following hours and lasts significantly longer (Margulies et al., 2005; Quinn and Dudai, 1976). I showed here that the establishment of ARM requires less intensity of shock reinforcement than ASM. ARM and ASM rely on different molecular and/or neuronal processes: ARM is selectively impaired in the radish mutant, whereas for example the amnesiac and rutabaga genes are specifically required for ASM (Dudai et al., 1988; Folkers et al., 1993; Isabel et al., 2004; Quinn and Dudai, 1976; Schwaerzel et al., 2007; Tully et al., 1994). The latter comprise the cAMP signaling pathway in the fly, with the PKA being its supposed major target (Levin et al., 1992). Here I showed that a synapsin null-mutant encoding the evolutionary conserved phosphoprotein Synapsin is selectively impaired in the labile ASM. Further experiments suggested Synapsin as a potential downstream effector of the cAMP/PKA cascade. Similar to my results, Synapsin plays a role for different learning tasks in vertebrates (Gitler et al., 2004; Silva et al., 1996). Also in Aplysia, PKA-dependent phosphorylation of Synapsin has been proposed to be involved in regulation of neurotransmitter release and short-term plasticity (Angers et al., 2002; Fiumara et al., 2004). Synapsin is associated with a reserve pool of vesicles at the presynapse and is required to maintain vesicle release specifically under sustained high frequency nerve stimulation (Akbergenova and Bykhovskaia, 2007; Li et al., 1995; Pieribone et al., 1995; Sun et al., 2006). In contrast, the requirement of Bruchpilot, which is homologous to the mammalian active zone proteins ELKS/CAST (Wagh et al., 2006), is most pronounced in immediate vesicle release (Kittel et al., 2006). Under repeated stimulation of a bruchpilot mutant motor neuron, immediate vesicle release is severely impaired whereas the following steady-state release is still possible (Kittel et al., 2006). In line with that, knockdown of the Bruchpilot protein causes impairment in clustering of Ca2+ channels to the active zones and a lack of electron-dense projections at presynaptic terminals (T-bars). Thus, less synaptic vesicles of the readily-releasable pool are accumulated to the release sites and their release probability is severely impaired (Kittel et al., 2006; Wagh et al., 2006). First, I showed that Bruchpilot is required for aversive olfactory memory and localized the requirement of Bruchpilot to the Kenyon cells of the mushroom body, the second-order olfactory interneurons in Drosophila. Furthermore, I demonstrated that Bruchpilot selectively functions for the consolidated anesthesia-resistant memory. Since Synapsin is specifically required for the labile anesthesia sensitive memory, different synaptic proteins can dissociate consolidated and labile components of olfactory memory and two different modes of neurotransmission (high- vs. low frequency dependent) might differentiate ASM and ARM.}, subject = {Taufliege}, language = {en} } @phdthesis{Nieratschker2008, author = {Nieratschker, Vanessa}, title = {Charakterisierung der Serin-/Threonin-Proteinkinase SRPK3 in Drosophila melanogaster und Phosphorylierungsstudien an Synapsin}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-27806}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {In einer vorangegangenen Arbeit konnte eine hypomorphe Mutation innerhalb des Genlokus einer putativen Serin-/Threonin-Kinase als Ausl{\"o}ser der Aggregatbildung des Aktive-Zone- Proteins Bruchpilot in larvalen Motoneuronaxonen identifiziert werden (Nieratschker, 2004). Aufgrund der Homologien dieser Kinase zu SR-Proteinkinasen wurde der Name Serin- /Threonin-Proteinkinase 3 (SRPK3) vorgeschlagen. Laut urspr{\"u}nglicher Annotation der „Flybase" (http://flybase.bio.indiana.edu) codiert der Genlokus der Srpk3, der auf dem linken Arm des dritten Chromosoms innerhalb der Region 79D4 lokalisiert ist und sich {\"u}ber ca. 10,3 kb erstreckt, f{\"u}r zwei Transkripte (Srpk3-RC und Srpk3-RB). Diese beiden Transkripte haben unterschiedliche Transkriptions- und Translationsstartpunkte und unterscheiden sich in ihrem ersten kodierenden Exon, ab dem vierten Exon sind sie allerdings identisch. Das Srpk3-RCTranskript umfasst ca. 4,2 kb, das Srpk3-RB-Transkript ca. 3,8 kb. Die von diesen Transkripten kodierten Proteine bestehen aus 816 (Srpk3-RC) bzw. 749 (Srpk3-RB) Aminos{\"a}uren. Diese beiden urspr{\"u}nglich annotierten Transkripte konnten durch RT-PCR-Experimente best{\"a}tigt werden. Dabei wurde auch ein zus{\"a}tzliches, alternativ gespleißtes Exon von 159 bp entdeckt, das beiden Transkripten zugeordnet werden kann. Somit codiert der Srpk3-Genlokus f{\"u}r mindestens vier Transkripte, die Transkripte der RC/RF-Transkriptgruppe mit (Srpk3-RF) und ohne (Srpk3-RC) das alternativ gespleißte Exon und die Transkripte der RB/RETranskriptgruppe mit (Srpk3-RE) und ohne (Srpk3-RB) das alternativ gespleißte Exon. Die Existenz eines weiteren Transkriptes Srpk3-RD, die in der aktuellen Version der „Flybase" annotiert ist, konnte durch RT-PCR-Experimente nicht nachgewiesen werden. Zu Beginn dieser Arbeit lag eine hypomorphe Mutante f{\"u}r die SRPK3 schon vor (Srpk3P1; Eberle, 1995). Diese Linie tr{\"a}gt eine P-Elementinsertion innerhalb des ersten Exons der RC/RF-Transkriptgruppe, die das Leseraster dieser Transkriptgruppe zerst{\"o}rt, so dass in dieser Linie nur die RB/RE-Transkriptgruppe gebildet werden kann. Wie bereits erw{\"a}hnt, konnte diese Mutation in vorangegangenen Arbeiten bereits als der Ausl{\"o}ser der Aggregatbildung des Bruchpilot-Proteins in larvalen Motoneuronaxone, sowie einiger Verhaltensdefekte identifiziert werden (Nieratschker, 2004; Bock 2006). Diese Verhaltensdefekte {\"a}hneln stark denen, die durch einen knock-down der Bruchpilot-Expression mittels RNAi ausgel{\"o}st werden (Wagh et al., 2006; Bock, 2006), was auf eine Interaktion beider Proteine schließen l{\"a}sst. Um nun den Beweis f{\"u}hren zu k{\"o}nnen, dass tats{\"a}chlich diese Mutation die beobachteten Ph{\"a}notypen verursacht, wurden Rettungsversuche durchgef{\"u}hrt. Die Srpk3-RF-cDNA war dabei in der Lage die durch die hypomorphe Mutation der SRPK3 verursachten Ph{\"a}notypen vollst{\"a}ndig, oder zumindest teilweise zu retten (vgl. auch Bock, 2006; Bloch, 2007). Damit konnte belegt werden, dass die hypomorphe Mutation der SRPK3 tats{\"a}chlich die in der Mutante Srpk3P1 beobachteten Ph{\"a}notypen verursacht. Um die durch in situ Hybridisierung erhaltenen Daten zur Lokalisation der SRPK3 im larvalen Gehirn (Nieratschker, 2004) best{\"a}tigen, sowie weitere Daten erhalten zu k{\"o}nnen, wurden Isoform-spezifische Antisera gegen die SRPK3 generiert. Diese Antiseren sind in der Lage {\"u}berexprimiertes Protein zu detektieren (Bloch, 2007), allerdings ist es mit diesen Antiseren nicht m{\"o}glich die SRPK3 in wildtypischen Pr{\"a}paraten nachzuweisen. Weitere Daten zur Lokalisation der SRPK3, die durch die Verwendung eines SRPK3-eGFPFusionsproteins erhalten wurden, zeigten, dass eine der ektopisch {\"u}berexprimierten SRPK3- Isoformen mit Bruchpilot an der Aktiven Zone kolokalisiert. Dieses Ergebnis, in Verbindung mit den durch die Mutation der SRPK3 verursachten Bruchpilot-Aggregaten in larvalen Motoneuronaxonen und den Verhaltensdefekten, gibt Hinweise auf eine m{\"o}gliche direkte Interaktion beider Proteine….}, subject = {Drosophila melanogaster}, language = {de} } @phdthesis{Wagh2005, author = {Wagh, Dhananjay Anil}, title = {"Bruchpilot" -molecular and functional characterization of a novel active zone protein at the Drosophila synapse}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-14989}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2005}, abstract = {Chemical neurotransmission is a complex process of central importance for nervous system function. It is thought to be mediated by the orchestration of hundreds of proteins for its successful execution. Several synaptic proteins have been shown to be relevant for neurotransmission and many of them are highly conserved during evolution- suggesting a universal mechanism for neurotransmission. This process has checkpoints at various places like, neurotransmitter uptake into the vesicles, relocation of the vesicles to the vicinity of calcium channels in order to facilitate Ca2+ induced release thereby modulating the fusion probability, formation of a fusion pore to release the neurotransmitter and finally reuptake of the vesicles by endocytosis. Each of these checkpoints has now become a special area of study and maintains its own importance for the understanding of the overall process. Ca2+ induced release occurs at specialized membrane structures at the synapse known as the active zones. These are highly ordered electron dense grids and are composed of several proteins which assist the synaptic vesicles in relocating in the vicinity of Ca2+ channels thereby increasing their fusion probability and then bringing about the vesicular fusion itself. All the protein modules needed for these processes are thought to be held in tight arrays at the active zones, and the functions of a few have been characterized so far at the vertebrate active zones. Our group is primarily interested in characterizing the molecular architecture of the Drosophila synapse. Due to its powerful genetics and well-established behavioural assays Drosophila is an excellent system to investigate neuronal functioning. Monoclonal antibodies (MABs) from a hybridoma library against Drosophila brain are routinely used to detect novel proteins in the brain in a reverse genetic approach. Upon identification of the protein its encoding genetic locus is characterized and a detailed investigation of its function is initiated. This approach has been particularly useful to detect synaptic proteins, which may go undetected in a forward genetic approach due to lack of an observable phenotype. Proteins like CSP, Synapsin and Sap47 have been identified and characterized using this approach so far. MAB nc82 has been one of the shortlisted antibodies from the same library and is widely used as a general neuropil marker due to the relative transparency of immunohistochemical whole mount staining obtained with this antibody. A careful observation of double stainings at the larval neuromuscular junctions with MAB nc82 and other pre and post-synaptic markers strongly suggested an active zone localization of the nc82 antigen. Synaptic architecture is well characterized in Drosophila at the ultrastructural level. However, molecular details for many synaptic components and especially for the active zone are almost entirely unknown. A possible localization at the active zone for the nc82 antigen served as the motivation to initiate its biochemical characterization and the identification of the encoding gene. In the present thesis it is shown by 2-D gel analysis and mass spectrometry that the nc82 antigen is a novel active zone protein encoded by a complex genetic locus on chromosome 2R. By RT-PCR exons from three open reading frames previously annotated as separate genes are demonstrated to give rise to a transcript of at least 5.5 kb. Northern blots produce a prominent signal of 11 kb and a weak signal of 2 kb. The protein encoded by the 5.5 kb transcript is highly conserved amongst insects and has at its N-terminus significant homology to the previously described vertebrate active zone protein ELKS/ERC/CAST. Bioinformatic analysis predicts coiled-coil domains spread all over the sequence and strongly suggest a function involved in organizing or maintaining the structure of the active zone. The large C-terminal region is highly conserved amongst the insects but has no clear homologues in veretebrates. For a functional analysis of this protein transgenic flies expressing RNAi constructs under the control of the Gal4 regulated enhancer UAS were kindly provided by the collaborating group of S.Sigrist (G\&\#1616;ttingen). A strong pan-neuronal knockdown of the nc82 antigen by transgenic RNAi expression leads to embryonic lethality. A relatively weaker RNAi expression results in behavioural deficits in adult flies including unstable flight and impaired walking behavior. Due to this peculiar phenotype as observed in the first knockdown studies the gene was named "bruchpilot" (brp) encoding the protein "Bruchpilot (BRP)" (German for crash pilot). A pan-neuronal as well as retina specific downregulation of this protein results in loss of ON and OFF transients in ERG recordings indicating dysfunctional synapses. Retina specific downregulation also shows severely impaired optomotor behaviour. Finally, at an ultrastructural level BRP downregulation seems to impair the formation of the characteristic T-shaped synaptic ribbons at the active zones without significantly altering the overall synaptic architecture (in collaboration with E.Asan). Vertebrate active zone protein Bassoon is known to be involved in attaching the synaptic ribbons to the active zones as an adapter between active zone proteins RIBEYE and ERC/CAST. A mutation in Bassoon results in a floating synaptic ribbon phenotype. No protein homologous to Bassoon has been observed in Drosophila. BRP downregulation also results in absence of attached synaptic ribbons at the active zones. This invites the speculation of an adapter like function for BRP in Drosophila. However, while Bassoon mutant mice are viable, BRP deficit in addition to the structural phenotype also results in severe behavioural and physiological anomalies and even stronger downregulation causes embryonic lethality. This therefore suggests an additional and even more important role for BRP in development and normal functioning of synapses in Drosophila and also in other insects. However, how BRP regulates synaptic transmission and which other proteins are involved in this BRP dependant pathway remains to be investigated. Such studies certainly will attract prominent attention in the future.}, subject = {Taufliege}, language = {en} }