@phdthesis{Czakai2015, author = {Czakai, Kristin Bernadette}, title = {Interaktionen des humanpathogenen Pilzes Aspergillus fumigatus mit dem angeborenen Immunsystem und Thrombozyten}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-117496}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Pilze sind in unserer Umwelt allgegenw{\"a}rtig und besiedeln im Fall von Candida albicans (C. albicans) sogar bei {\"u}ber 50\% der Menschen die Schleimh{\"a}ute, w{\"a}hrend Sporen von Aspergillus fumigatus (A. fumigatus) t{\"a}glich {\"u}ber die Atmung in die Lunge des Menschen gelangen. Dennoch sind Erkrankungen, die durch diese zwei Pilze ausgel{\"o}st werden, bei gesunden Menschen selten. Ist jedoch das Immunsystem beeintr{\"a}chtigt, k{\"o}nnen diese Pilze zu systemischen und damit lebensbedrohlichen Erkrankungen wie der invasiven Aspergillose und der systemischen Candidiasis f{\"u}hren. F{\"u}r eine Verbesserung der Behandlung solcher Infektionen ist das genaue Verst{\"a}ndnis der Immunabwehrmechanismen entscheidend. Da A. fumigatus {\"u}ber die Lunge in den K{\"o}rper gelangt, wurden in dieser Arbeit die h{\"a}ufigsten Immunzellen der Lunge, die Makrophagen, und deren Immunantwort auf A. fumigatus untersucht. Parallel hierzu wurden dendritische Zellen (DCs) verwendet, die als Br{\"u}cke zwischen dem angeborenen und adaptiven Immunsystem wirken. Ein besonderes Augenmerk wurde hierbei auf A. fumigatus induzierte Genexpressions{\"a}nderungen und deren Regulationsmechanismen gelegt. Dabei wurden kurze, regulatorische RNAs, die sogenannten miRNAs, untersucht, die eine wichtige Rolle in der post-transkriptionalen Genregulation spielen. Bislang ist nur wenig {\"u}ber die miRNA-abh{\"a}ngigen Genregulationen in DCs, die auf eine Infektion mit A. fumigatus oder C. albicans reagieren, bekannt. Um alle durch A. fumigatus und C. albicans regulierten miRNAs zu identifizieren, wurden DCs mit A. fumigatus und C. albicans ko-kultiviert und anschließend eine Komplettsequenzierung der kurzen RNAs durchgef{\"u}hrt. Die Pilz-spezifische Induktion der miRNA-Regulation wurde zudem mit der miRNA-Regulation durch den bakteriellen Zellwandbestandteil Lipopolysaccharid verglichen. Durch die Stimulation mit Keimschl{\"a}uchen von A. fumigatus wurden die miRNAs miR-132-3p/5p, miR-155-5p, miR129-2-3p, miR-129-5p, miR-212-3p/5p und miR-9-5p in DCs induziert. Diese wurden ebenfalls durch C. albicans induziert, zudem noch die miRNAs miR-147a und miR-147b. Spezifisch f{\"u}r A. fumigatus war die Regulation der miR-129-2-3p. Neben dem miRNA-Profiling wurde auch das mRNA-Transkriptom {\"u}ber Microarrays analysiert und dadurch 18 potentielle Zielgene der Pilz-induzierten miRNAs identifiziert. Neben den Elementen der Translationsregulation wurden auch die Transkriptionsfaktoren untersucht. Als einziger unter den 60 regulierten Transkriptionsfaktoren zeigte KLF4 eine ver{\"a}nderte Expressionsrichtung in DCs, die mit Pilzen oder LPS behandelt waren. W{\"a}hrend die Stimulation mit LPS die Expression von KLF4 induzierte, wurde es durch die Pilze A. fumigatus und C. albicans reprimiert. In einer Untersuchung der unterschiedlichen A. fumigatus-Rezeptoren, wurde deren Einfluss auf die KLF4-Regulation gezeigt. W{\"a}hrend TLR4-Liganden KLF4 induzierten, f{\"u}hrten Liganden, die an die Rezeptoren TLR2/TLR1 und Dectin-1 binden, zu einer Reduktion von KLF4. Nach einem erfolgreich etablierten KLF4-knock-down mittels RNA-Interferenz wurden KLF4-Zielgene untersucht. W{\"a}hrend kein bzw. nur ein geringer Effekt auf die Genexpression von CCL2, RANTES, CXCL10 und TNF beobachtet wurde, sorgte der KLF4 knock-down f{\"u}r eine hoch signifikante Reduktion der IL6-Genexpression in LPS-stimulierten DCs. Um die KLF4-Regulation weiter zu untersuchen, wurde zudem eine weitere Zellpopulation des angeborenen Immunsystems, die Makrophagen, verwendet. Auch hier wurde die Immunantwort gegen A. fumigatus analysiert. Zudem wurde die Rolle der Thrombozyten als Immunmediatoren betrachtet. Zuerst wurde ein Zytokinprofil des pl{\"a}ttchenreichen Plasmas (PRP), das mit A. fumigatus stimuliert wurde, erstellt. In diesem konnte nur RANTES in hoher Konzentration nachgewiesen werden. Daraufhin wurde der Einfluss von PRP auf die Reifung von DCs, die Phagozytosef{\"a}higkeit von Makrophagen und DCs sowie der Einfluss von DCs und Makrophagen auf die metabolische Aktivit{\"a}t von A. fumigatus in An- und Abwesenheit von pl{\"a}ttchenreichem Plasma untersucht. Es konnte eine gering verst{\"a}rkte Reifung der DCs durch PRP gezeigt werden. Isolierte Thrombozyten konnten die Phagozytose von DCs steigern, w{\"a}hrend Makrophagen durch PRP verst{\"a}rkt Konidien phagozytierten. In einem genomweiten Transkriptomprofiling wurde die Immunantwort von DCs und Makrophagen verglichen. Zudem wurde untersucht, wie PRP die Immunantwort dieser Immunzellen beeinflusst. Es wurden 2 bzw. 24 Gene identifiziert, die signifikant in A. fumigatus-stimulierten DCs und Makrophagen reguliert waren. Hierbei wurde gezeigt, dass KLF4 durch die Zugabe von PRP herabreguliert wurde. Das zuvor beschriebene Zielgen IL6 wurde durch PRP in A. fumigatus-stimulierten DCs gegen{\"u}ber stimulierten DCs ohne PRP deutlich reduziert, wodurch sich eine immunmodulatorische F{\"a}higkeit des PRP zeigte. Die Induktion von IL-6, weiteren Zytokinen und der Reifemarker durch A. fumigatus in DCs wurden zudem in einem Booleschen Modell simuliert. Dieses Modell soll in Zukunft Vorhersagen {\"u}ber experimentelle Ergebnisse und dadurch eine optimale Versuchsvorbereitung erm{\"o}glichen.}, subject = {Aspergillus fumigatus}, language = {de} } @phdthesis{Busch2013, author = {Busch, Rhoda}, title = {Redundancy and indispensability of NFATc1-isoforms in the adaptive and innate immune system}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-91096}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Peritonitis is a common disease in man, frequently caused by fungi, such as Candida albicans; however, in seldom cases opportunistic infections with Saccharomyces cerevisiae are described. Resident peritoneal macrophages (prMΦ) are the major group of phagocytic cells in the peritoneum. They express a broad range of surface pattern recognition receptors (PRR) to recognize invaders. Yeast infections are primarily detected by the Dectin-1 receptor, which triggers activation of NFAT and NF-κB pathways. The transcription of the Nfatc1 gene is directed by the two alternative promoters, inducible P1 and relatively constitutive P2 promoter. While the role of P1-directed NFATc1α-isoforms to promote survival and proliferation of activated lymphocytes is well-established, the relevance of constitutively generated NFATc1β-isoforms, mainly expressed in resting lymphocytes, myeloid and non-lymphoid cells, remains unclear. Moreover, former work at our department indicated different roles for NFATc1α- and NFATc1β-proteins in lymphocytes. Our data revealed the functional role of NFATc1 in peritoneal resident macrophages. We demonstrated that the expression of NFATc1β is required for a proper immune response of prMΦ during fungal infection-induced acute peritonitis. We identified Ccl2, a major chemokine produced in response to fungal infections by prMΦ, as a novel NFATc1 target gene which is cooperatively regulated through the NFAT- and canonical NF-κB pathways. Consequently, we showed that NFATc1β deficiency in prMΦ results in a decreased infiltration of inflammatory monocytes, leading to a delayed clearance of peritoneal fungal infection. We could further show that the expression of NFATc1β-isoforms is irrelevant for homeostasis of myeloid and adaptive immune system cells and that NFATc1α- (but not β-) isoforms are required for a normal development of peritoneal B1a cells. In contrast to the situation in myeloid cells, NFATc1β deficiency is compensated by increased expression of NFATc1α-isoforms in lymphoid cells. As a consequence, NFATc1ß is dispensable for activation of the adaptive immune system. Taken together our results illustrate the redundancy and indispensability of NFATc1-isoforms in the adaptive and innate immune system, indicating a complex regulatory system for Nfatc1 gene expression in different compartments of the immune system and likely beyond that.}, subject = {Immunsystem}, language = {en} } @phdthesis{Azzami2011, author = {Azzami, Klara}, title = {Antibakterielle und antivirale Abwehrreaktionen in unterschiedlichen Entwicklungsstadien der Honigbiene (Apis mellifera)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-66452}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Das angeborene Immunsystem von Insekten besteht aus einer humoralen Komponente, einer zellul{\"a}ren Komponente und dem Prophenoloxidase-aktivierenden System. Fast alle Erkenntnisse {\"u}ber das angeborene Immunsystem stammen von Arbeiten mit Modellorganismen wie z.B. Drosophila oder Anopheles gambiae. Wie genau das Immunsystem der Honigbiene (Apis mellifera) funktioniert, ist jedoch noch relativ unbekannt. In der vorliegenden Arbeit wurden die unterschiedlichen Immunreaktionen aller drei Entwicklungsstadien der Honigbiene nach artifizieller Infektion mit Gram-negativen und Gram-positiven Bakterien (Escherichia coli und Micrococcus flavus) und dem Akuten Bienen Paralyse Virus (ABPV) untersucht und verglichen. Eine E. coli-Injektion zeigt bei Larven und adulten Arbeiterinnen nur wenig Auswirkung auf das {\"a}ußere Erscheinungsbild und die {\"U}berlebensrate. In beiden Entwicklungsstadien wird die humorale Immunantwort stark induziert, erkennbar an der Expression der antimikrobiellen Peptide (AMPs) Hymenoptaecin, Defensin1 und Abaecin. Zus{\"a}tzlich werden allein in Jungbienen nach bakterieller Infektion vier weitere immunspezifische Proteine exprimiert. Unter anderem eine Carboxylesterase (CE1) und das Immune-Responsive Protein 30 (IRp30). Die Expression von CE1 und IRp30 zeigt dabei den gleichen zeitlichen Verlauf wie die der AMPs. In Jungbienen kommt es zudem nach E. coli-Injektion zu einer raschen Abnahme an lebenden Bakterien in der H{\"a}molymphe, was auf eine Aktivierung der zellul{\"a}ren Immunantwort schließen l{\"a}sst. {\"A}ltere Bienen und Winterbienen zeigen eine st{\"a}rkere Immunkompetenz als Jungbienen. Selbst nicht-infizierte Winterbienen exprimieren geringe Mengen der immunspezifischen Proteine IRp30 und CE1. Die Expression von IRp30 kann dabei durch Verwundung oder Injektion von E. coli noch gesteigert werden. Eine weitere Besonderheit ist die im Vergleich zu Jungbienen raschere Abnahme an lebenden Bakterien in der H{\"a}molymphe bis hin zur vollst{\"a}ndigen Eliminierung. Die Reaktion von Puppen auf eine bakterielle Infektion war v{\"o}llig unerwartet. Nach Injektion von E. coli-Zellen kommt es innerhalb von 24 h p.i. zu einem t{\"o}dlichen Kollaps, der sich in einer Grauf{\"a}rbung des gesamten Puppenk{\"o}rpers {\"a}ußert. Da keine Expression von AMPs nachzuweisen war, wird die humorale Immunantwort offensichtlich nicht induziert. Auch die zellul{\"a}re Immunantwort scheint nicht aktiviert zu werden, denn es konnte keine Abnahme an lebenden E. coli-Zellen beobachtet werden. Aufgrund dieser fehlenden Immunreaktionen vermehrt sich E. coli im H{\"a}mocoel infizierter Puppen und scheint damit deren Tod herbeizuf{\"u}hren. Nach viraler Infektion wurden in allen drei Entwicklungsstadien der Honigbiene g{\"a}nzlich andere Reaktionen beobachtet als nach bakterieller Infektion. Bei dem verwendeten Akuten Bienen Paralyse Virus (ABPV) handelt es sich um ein Picorna-{\"a}hnliches Virus, dessen Vermehrung in der H{\"a}molymphe {\"u}ber die massive Synthese der Capsidproteine verfolgt werden kann. Eine Injektion von sehr wenigen ABPV-Partikeln ins H{\"a}mocoel hat dramatische Auswirkungen auf Larven. Nach Virusinjektion kommt es innerhalb weniger Stunden zu einer raschen Virusvermehrung und schon 24 h p.i. zum Tod, h{\"a}ufig begleitet von einer Schwarzf{\"a}rbung der gesamten Larve. Kurz vor dem Ableben kommt es neben dem Abbau hochmolekularer Speicherproteine zur Expression zahlreicher Proteine, die u.a. an der Translation oder dem Schutz vor oxidativem Stress beteiligt sind. Auf Jungbienen hat eine ABPV-Infektion keine so dramatischen Auswirkungen wie auf Larven. Sie zeigen lediglich Zeichen von Paralyse, zudem {\"u}berleben sie l{\"a}nger bei h{\"o}heren injizierten Partikelzahlen, die Virusvermehrung ist langsamer und es kommt zu keiner starken Ver{\"a}nderung des H{\"a}molymph-Proteinmusters. Es konnte gezeigt werden, dass es in ABPV-infizierten Larven oder adulten Bienen zu keiner erkennbaren Aktivierung des humoralen Immunsystems in Form von exprimierten AMPs kommt. Zudem scheint die humorale Immunantwort auch nicht unterdr{\"u}ckt zu werden, denn nach gleichzeitiger Injektion von E. coli und ABPV kommt es neben der Expression viraler Capsidproteine auch zur Expression von AMPs. Zus{\"a}tzlich konnte in Jungbienen nach Infektion mit ABPV eine zellul{\"a}re Immunantwort in Form von Nodulation ausgeschlossen werden. {\"A}ltere Bienen scheinen nicht nur mit bakteriellen Infektionen, sondern auch mit einer ABPV-Infektion besser zurechtzukommen. Bei einer Menge an ABPV-Partikeln, die in Jungbienen sp{\"a}testens 72 h p.i. zum Tod f{\"u}hrt, ist in Winterbienen eine Virusvermehrung erst ab 96 h p.i. erkennbar und diese beeintr{\"a}chtigt die {\"U}berlebensrate kaum. Puppen sind einer Virusinfektion genauso schutzlos ausgeliefert wie einer Bakterieninfektion. Es kommt zwar zu keiner starken {\"A}nderung des {\"a}ußeren Erscheinungsbildes, jedoch bleiben Puppen in ihrer Entwicklung komplett stehen. Das Virus muss sich daher stark vermehren, allerdings nicht {\"u}berwiegend - wie bei Larven und adulten Bienen - in der H{\"a}molymphe.}, subject = {Biene}, language = {de} } @phdthesis{Haneke2008, author = {Haneke, Torsten}, title = {Die Tumorgenese in Mlh1 defizienten M{\"a}usen und der Einfluss des Immunsystems auf die Abwehr von Tumoren in Mismatch Reparatur-(MMR-) defizienten M{\"a}usen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-28737}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {Das DNA-Mismatch-Reparatur-(MMR-) System ist das einzig bekannte postreplikativ arbeitende DNA-Reparatur-System. Es wurde gezeigt, dass die MMR-Aktivit{\"a}t f{\"u}r den Erhalt der genomischen Stabilit{\"a}t in Prokaryoten und Eukaryoten notwendig ist. Defekte in Genen des MMR-Systems (wie beispielsweise MLH1 oder MSH2) wurden als Ursache f{\"u}r die Entstehung des heredit{\"a}ren nicht-polyp{\"o}sen kolorektalen Karzinoms (HNPCC) und anderen Tumorarten beschrieben. In der vorliegenden Arbeit wurde die Tumorgenese in Mlh1 defizienten M{\"a}usen (Mlh1-/-) untersucht und eine umfassende Charakterisierung der hier auftretenen Lymphome vorgenommen und die Bedeutung des Immunsystems f{\"u}r die Tumorgenese in Mlh1 defizienten M{\"a}usen durch Einkreuzen zus{\"a}tzlicher Immundefizienzen erruiert. Die auf einen reinen genetischen Hintergrund zur{\"u}ckgekreuzten Mlh1-/--M{\"a}use zeigten eine in zwei Wellen ablaufende Tumorgenese: Eine fr{\"u}he Phase, in der M{\"a}use lymphoide Tumoren entwickelten und eine sp{\"a}tere Phase, in der die Mlh1-/--Tiere vorwiegend an Gastrointestinaltumoren erkrankten. Wir konnten zeigen, dass die Mlh1 defizienten M{\"a}use ein breiteres Lymphomspektrum, als beispielsweise Msh2 defiziente Tiere aufweisen. Eine Vielzahl der untersuchten Lymphome Mlh1 defizienter M{\"a}use war mikrosatelliteninstabil (MSI). Die Tatsache, dass mikrosatellitenstabile (MSS) Lymphome in den Mlh1-/--Tieren vorkamen, impliziert aber auch, das MMR-Defizienz nicht zwingend durch Mikrosatelliteninstabilit{\"a}t gekennzeichnet sein muss. Es ist m{\"o}glich, dass sich eine Mikrosatelliteninstabilit{\"a}t erst zu einem sp{\"a}teren Zeitpunkt der Tumorentwicklung in MMR-defizienten Zellen manifestiert. Darauf deuten auch die MSI-Analysen der in den Rag-/-/Mlh1-/--M{\"a}usen fr{\"u}hzeitiger als in Mlh1-/--M{\"a}usen auftretenden Gastrointestinaltumoren hin. Einige dieser untersuchten Gastrointestinaltumoren in den Rag-/-/Mlh1-/--M{\"a}usen waren mikrosatellitenstabil, wohingegen s{\"a}mtliche Gastrointestinaltumoren der Mlh1 defizienten Mauspopulation Mikrosatelliteninstabilit{\"a}t aufwiesen. In einigen der untersuchten Lymphome fehlte die MHC Klasse I-Molek{\"u}lexpression, was auf deutet den Einfluss des Immunsystems auf die Erkennung und Eliminierung von (durch MMR-Defizienz entstandenen) Tumoren hindeutet. Um die Art der Immunantwort und die verantwortlichen Komponenten des Immunsystems f{\"u}r die Abwehr MMR-defizienter Tumoren einzugrenzen, wurden verschiedene immunkompromitierte oder immundefiziente Mauslinien in Mlh1 defiziente M{\"a}use eingekreuzt. Dieses waren Mauslinien mit beta2Mikroglobulin- (b2m-/--), Perforin- (pfp-/--), beta2Mikroglobulin/Perforin- (b2m-/-/pfp-/--) und Recombination activation gene- (Rag-/--) Defizienz. H{\"a}ufig wurde in diesen Tieren eine Verschiebung im Tumorspektrum und ein beschleunigtes zeitliches Auftreten der Tumoren beobachtet. Anhand dieser Modelle konnten wir demonstrieren, dass insbesondere die Regulierung der MHC Klasse I-Molek{\"u}lexpression ein bedeutsamer Schritt f{\"u}r die Auspr{\"a}gung verschiedener Lymphomarten ist, welcher das „{\"U}berleben" der Tumorzellen gew{\"a}hrleistet. Auch die Notwendigkeit einer balancierten Expression von NK-Zell-stimulatorischen und -inhibitorischen Liganden auf der Tumorzelloberfl{\"a}che, welche die Erkennung und Eliminierung von Tumorzellen durch Nicht-MHC Klasse I-abh{\"a}ngige Immunzellen (wie z.B. den Nat{\"u}rliche Killerzellen) reguliert, liess sich mit Hilfe der beta2Mikroglobulin- und Perforin-Mausmodelle aufzeigen. Offensichtlich sind f{\"u}r die in Mlh1 defizienten M{\"a}usen vorkommenden verschiedenen Tumorarten unterschiedliche zellul{\"a}re Komponenten und Abwehrmechanismen des Immunsystems f{\"u}r die Erkennung und Eliminierung verantwortlich. So beeinflussen insbesondere cytotoxische T-Zellen (CTLs) die Entstehung von Gastrointestinaltumoren in Mlh1 defizienten M{\"a}usen. F{\"u}r die lymphoiden Tumoren ergab sich ein divergentes Bild. Hier beschr{\"a}nkte sich der Einfluss der CTLs bei der Lymphomabwehr auf die Erkennung und Eliminierung disseminierter T- und B-Zell-Lymphome. Die in den Mlh1-/--M{\"a}usen nachgewiesenen thymischen T-Zell Lymphome dagegen unterlagen der perforin-vermittelten Zellabwehr durch Nicht-MHC Klasse I-beschr{\"a}nkte Immunzellen (z.B. Nat{\"u}rlichen Killerzellen). Die Relevanz der vorliegenden Mausmodelle wird deutlich, wenn man sich die Situation von immunsupprimierten Posttransplantationspatienten und immundefizienten HIV-Patienten vor Augen f{\"u}hrt. H{\"a}ufig beobachtet man in diesen Patientengruppen das Auftreten lymphoider Tumoren. Diese sind oftmals Mikrosatelliteninstabil, was auf eine vorliegende MMR-Defizienz hindeutet. Zudem zeigen diese Lymphome {\"a}hnliche Merkmale, wie die durch Mlh1-Defizienz entstandenen lymphoiden Tumoren. Insbesondere f{\"u}r Studien solcher Lymphome stellt die Mlh1-defiziente Maus mit den verschiedenen eingekreuzten Immundefizienzen ein geeignetes in vivo Model dar.}, subject = {Lymphom}, language = {de} } @phdthesis{Tischner2007, author = {Tischner, Denise}, title = {Mechanistische Untersuchungen zur Therapie von Multipler Sklerose am Beispiel der Experimentellen Autoimmunen Encephalomyelitis}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-25258}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2007}, abstract = {No abstract available}, subject = {Autoimmunit{\"a}t}, language = {de} }