@article{KatoLuRapaportetal.2013, author = {Kato, Hiroki and Lu, Qiping and Rapaport, Doron and Kozjak-Pavlovic, Vera}, title = {Tom70 Is Essential for PINK1 Import into Mitochondria}, series = {PLoS ONE}, volume = {8}, journal = {PLoS ONE}, number = {3}, doi = {10.1371/journal.pone.0058435}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-131061}, pages = {e58435}, year = {2013}, abstract = {PTEN induced kinase 1 (PINK1) is a serine/threonine kinase in the outer membrane of mitochondria (OMM), and known as a responsible gene of Parkinson's disease (PD). The precursor of PINK1 is synthesized in the cytosol and then imported into the mitochondria via the translocase of the OMM (TOM) complex. However, a large part of PINK1 import mechanism remains unclear. In this study, we examined using cell-free system the mechanism by which PINK1 is targeted to and assembled into mitochondria. Surprisingly, the main component of the import channel, Tom40 was not necessary for PINK1 import. Furthermore, we revealed that the import receptor Tom70 is essential for PINK1 import. In addition, we observed that although PINK1 has predicted mitochondrial targeting signal, it was not processed by the mitochondrial processing peptidase. Thus, our results suggest that PINK1 is imported into mitochondria by a unique pathway that is independent of the TOM core complex but crucially depends on the import receptor Tom70.}, language = {en} } @article{VolceanovHerbstBiniosseketal.2014, author = {Volceanov, Larisa and Herbst, Katharina and Biniossek, Martin and Schilling, Oliver and Haller, Dirk and N{\"o}lke, Thilo and Subbarayal, Prema and Rudel, Thomas and Zieger, Barbara and H{\"a}cker, Georg}, title = {Septins Arrange F-Actin-Containing Fibers on the Chlamydia trachomatis Inclusion and Are Required for Normal Release of the Inclusion by Extrusion}, series = {MBIO}, volume = {5}, journal = {MBIO}, number = {5}, issn = {2150-7511}, doi = {10.1128/mBio.01802-14}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-115421}, pages = {e01802-14}, year = {2014}, abstract = {Chlamydia trachomatis is an obligate intracellular human pathogen that grows inside a membranous, cytosolic vacuole termed an inclusion. Septins are a group of 13 GTP-binding proteins that assemble into oligomeric complexes and that can form higher-order filaments. We report here that the septins SEPT2, -9, -11, and probably -7 form fibrillar structures around the chlamydial inclusion. Colocalization studies suggest that these septins combine with F actin into fibers that encase the inclusion. Targeting the expression of individual septins by RNA interference (RNAi) prevented the formation of septin fibers as well as the recruitment of actin to the inclusion. At the end of the developmental cycle of C. trachomatis, newly formed, infectious elementary bodies are released, and this release occurs at least in part through the organized extrusion of intact inclusions. RNAi against SEPT9 or against the combination of SEPT2/7/9 substantially reduced the number of extrusions from a culture of infected HeLa cells. The data suggest that a higher-order structure of four septins is involved in the recruitment or stabilization of the actin coat around the chlamydial inclusion and that this actin recruitment by septins is instrumental for the coordinated egress of C. trachomatis from human cells. The organization of F actin around parasite-containing vacuoles may be a broader response mechanism of mammalian cells to the infection by intracellular, vacuole-dwelling pathogens. IMPORTANCE Chlamydia trachomatis is a frequent bacterial pathogen throughout the world, causing mostly eye and genital infections. C. trachomatis can develop only inside host cells; it multiplies inside a membranous vacuole in the cytosol, termed an inclusion. The inclusion is covered by cytoskeletal "coats" or "cages," whose organization and function are poorly understood. We here report that a relatively little-characterized group of proteins, septins, is required to organize actin fibers on the inclusion and probably through actin the release of the inclusion. Septins are a group of GTP-binding proteins that can organize into heteromeric complexes and then into large filaments. Septins have previously been found to be involved in the interaction of the cell with bacteria in the cytosol. Our observation that they also organize a reaction to bacteria living in vacuoles suggests that they have a function in the recognition of foreign compartments by a parasitized human cell.}, language = {en} }