@article{StrubeBlossBrownSpaetheetal.2015, author = {Strube-Bloss, Martin F. and Brown, Austin and Spaethe, Johannes and Schmitt, Thomas and R{\"o}ssler, Wolfgang}, title = {Extracting the Behaviorally Relevant Stimulus: Unique Neural Representation of Farnesol, a Component of the Recruitment Pheromone of Bombus terrestris}, series = {PLoS One}, volume = {10}, journal = {PLoS One}, number = {9}, doi = {10.1371/journal.pone.0137413}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-125875}, pages = {e0137413}, year = {2015}, abstract = {To trigger innate behavior, sensory neural networks are pre-tuned to extract biologically relevant stimuli. Many male-female or insect-plant interactions depend on this phenomenon. Especially communication among individuals within social groups depends on innate behaviors. One example is the efficient recruitment of nest mates by successful bumblebee foragers. Returning foragers release a recruitment pheromone in the nest while they perform a 'dance' behavior to activate unemployed nest mates. A major component of this pheromone is the sesquiterpenoid farnesol. How farnesol is processed and perceived by the olfactory system, has not yet been identified. It is much likely that processing farnesol involves an innate mechanism for the extraction of relevant information to trigger a fast and reliable behavioral response. To test this hypothesis, we used population response analyses of 100 antennal lobe (AL) neurons recorded in alive bumblebee workers under repeated stimulation with four behaviorally different, but chemically related odorants (geraniol, citronellol, citronellal and farnesol). The analysis identified a unique neural representation of the recruitment pheromone component compared to the other odorants that are predominantly emitted by flowers. The farnesol induced population activity in the AL allowed a reliable separation of farnesol from all other chemically related odor stimuli we tested. We conclude that the farnesol induced population activity may reflect a predetermined representation within the AL-neural network allowing efficient and fast extraction of a behaviorally relevant stimulus. Furthermore, the results show that population response analyses of multiple single AL-units may provide a powerful tool to identify distinct representations of behaviorally relevant odors.}, language = {en} } @phdthesis{Schmitt2004, author = {Schmitt, Thomas}, title = {Communication in the hymenoptera : chemistry, ecology and evolution}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-11267}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2004}, abstract = {Insects exhibit complex systems of communication with chemical signalling being the most important mode. Although there are many studies on chemical communication in insects, the evolution of chemical signals is not well understood. Due to the conflict of interests between individuals, different selective pressures might act on sender and receiver. In this thesis I investigate different types of communication where either the sender, the receiver or both parties yield benefits. These studies were conducted with one digger wasp species, honeybees, one chrysidid wasp, and three ant species. Senders might benefit by exploiting existing preferences of receivers. Such sensory exploitation might influence the evolution of male signals that are designed to attract females. The sex pheromone of male European beewolves Philanthus triangulum (Hymenoptera, Crabronidae) might have evolved according to the sensory exploitation hypothesis. A three-step scenario is supported by our studies. First, a major component of the honeybee alarm pheromone, (Z)-11-eicosen-1-ol, is also found on the cuticles and in the air surrounding foraging honeybees. Second, it could be shown, that (Z)-11- eicosen-1-ol plays a crucial role as kairomone for prey identification of honeybees by beewolf females. Third, a reanalysis of the beewolf male sex pheromone shows a remarkable similarity of compounds between the pheromone and the honeybee cuticle, besides the co-occurrence of (Z)-11-eisosen-ol. The majority of the cuticular hydrocarbons of honeybees occur also in the headspace of foraging workers. These results strongly support the hypothesis that beewolf males evolved a pheromone that exploits the females' pre-existing sensory sensitivity. In addition, the male sex pheromone shows a significantly higher similarity among brothers than among non-related individuals, which might enable beewolf females to discriminate against brothers and avoid detrimental effects of breeding. Together with the studies on the possible sensory exploitation this result shows that both, male and female beewolves probably gain more benefits than costs from the pheromone communication and, thus, the communication system as a whole can be regarded as cooperative. To maintain the reproductive division of labour in eusocial colonies, queens have to signal their presence and fecundity. In the ant Camponotus floridanus (Hymenoptera, Formicidae) queens mark their own eggs with a distinctive pattern of cuticular hydrocarbons. Two different hypotheses have been developed. One suggests a form of worker manipulation by the queen. The alternative hypothesis assumes a cooperative signal that provides information on the condition of the queen. The results of our investigation clearly favour the latter hypothesis. Chemical mimicry is a form of non-cooperative communication that benefits predominantly the sender. We provided conclusive evidence that the cockoo wasp, Hedychrum rutilans (Hymenoptera, Chrysididae), the primary brood parasitoid of Philanthus triangulum, evades recognition by beewolf females most probably by chemical mimicry of the odour of its host. Furthermore, the adaptation of the chemical signature in the social ant parasite Protomognathus americanus (Hymenoptera, Formicidae) to its Leptothorax (Hymenoptera, Formicidae) hosts was investigated. Although this parasite is principally adapted to its hosts' cuticular hydrocarbon profile, there are still pronounced differences between the profiles of parasites and hosts. This might be explained by the trade-off, which the parasites faces when confronted locally with two host species with different cuticular hydrocarbon profiles. Non-cooperative communication in the sense that only receivers benefit was discovered in the exploitation of honeybees volatile cuticular hydrocarbons by beewolf females. By using emitted (Z)-11-eicosen-1-ol as a kairomone, the receiver, the beewolf female, yields the benefits and the sender, the honeybee prey, bears all the costs. The results of these studies contribute to the understanding of the evolution of cooperative and non-cooperative communication with chemical signals taking into account differential benefits for sender and/or receiver.}, subject = {Hautfl{\"u}gler}, language = {en} }