@article{WuZhaoHochreinetal.2023, author = {Wu, Hao and Zhao, Xiufeng and Hochrein, Sophia M. and Eckstein, Miriam and Gubert, Gabriela F. and Kn{\"o}pper, Konrad and Mansilla, Ana Maria and {\"O}ner, Arman and Doucet-Ladev{\`e}ze, Remi and Schmitz, Werner and Ghesqui{\`e}re, Bart and Theurich, Sebastian and Dudek, Jan and Gasteiger, Georg and Zernecke, Alma and Kobold, Sebastian and Kastenm{\"u}ller, Wolfgang and Vaeth, Martin}, title = {Mitochondrial dysfunction promotes the transition of precursor to terminally exhausted T cells through HIF-1α-mediated glycolytic reprogramming}, series = {Nature Communications}, volume = {14}, journal = {Nature Communications}, doi = {10.1038/s41467-023-42634-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-358052}, year = {2023}, abstract = {T cell exhaustion is a hallmark of cancer and persistent infections, marked by inhibitory receptor upregulation, diminished cytokine secretion, and impaired cytolytic activity. Terminally exhausted T cells are steadily replenished by a precursor population (Tpex), but the metabolic principles governing Tpex maintenance and the regulatory circuits that control their exhaustion remain incompletely understood. Using a combination of gene-deficient mice, single-cell transcriptomics, and metabolomic analyses, we show that mitochondrial insufficiency is a cell-intrinsic trigger that initiates the functional exhaustion of T cells. At the molecular level, we find that mitochondrial dysfunction causes redox stress, which inhibits the proteasomal degradation of hypoxia-inducible factor 1α (HIF-1α) and promotes the transcriptional and metabolic reprogramming of Tpex cells into terminally exhausted T cells. Our findings also bear clinical significance, as metabolic engineering of chimeric antigen receptor (CAR) T cells is a promising strategy to enhance the stemness and functionality of Tpex cells for cancer immunotherapy.}, language = {en} } @article{MuellerMitesserSchaeferetal.2023, author = {M{\"u}ller, J{\"o}rg and Mitesser, Oliver and Schaefer, H. Martin and Seibold, Sebastian and Busse, Annika and Kriegel, Peter and Rabl, Dominik and Gelis, Rudy and Arteaga, Alejandro and Freile, Juan and Leite, Gabriel Augusto and de Melo, Tomaz Nascimento and LeBien, Jack and Campos-Cerqueira, Marconi and Bl{\"u}thgen, Nico and Tremlett, Constance J. and B{\"o}ttger, Dennis and Feldhaar, Heike and Grella, Nina and Falcon{\´i}-L{\´o}pez, Ana and Donoso, David A. and Moriniere, Jerome and Buřivalov{\´a}, Zuzana}, title = {Soundscapes and deep learning enable tracking biodiversity recovery in tropical forests}, series = {Nature Communications}, volume = {14}, journal = {Nature Communications}, doi = {10.1038/s41467-023-41693-w}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-358130}, year = {2023}, abstract = {Tropical forest recovery is fundamental to addressing the intertwined climate and biodiversity loss crises. While regenerating trees sequester carbon relatively quickly, the pace of biodiversity recovery remains contentious. Here, we use bioacoustics and metabarcoding to measure forest recovery post-agriculture in a global biodiversity hotspot in Ecuador. We show that the community composition, and not species richness, of vocalizing vertebrates identified by experts reflects the restoration gradient. Two automated measures - an acoustic index model and a bird community composition derived from an independently developed Convolutional Neural Network - correlated well with restoration (adj-R² = 0.62 and 0.69, respectively). Importantly, both measures reflected composition of non-vocalizing nocturnal insects identified via metabarcoding. We show that such automated monitoring tools, based on new technologies, can effectively monitor the success of forest recovery, using robust and reproducible data.}, language = {en} } @article{BeetzKrauselJundi2023, author = {Beetz, M. Jerome and Kraus, Christian and el Jundi, Basil}, title = {Neural representation of goal direction in the monarch butterfly brain}, series = {Nature Communications}, volume = {14}, journal = {Nature Communications}, doi = {10.1038/s41467-023-41526-w}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-358073}, year = {2023}, abstract = {Neural processing of a desired moving direction requires the continuous comparison between the current heading and the goal direction. While the neural basis underlying the current heading is well-studied, the coding of the goal direction remains unclear in insects. Here, we used tetrode recordings in tethered flying monarch butterflies to unravel how a goal direction is represented in the insect brain. While recording, the butterflies maintained robust goal directions relative to a virtual sun. By resetting their goal directions, we found neurons whose spatial tuning was tightly linked to the goal directions. Importantly, their tuning was unaffected when the butterflies changed their heading after compass perturbations, showing that these neurons specifically encode the goal direction. Overall, we here discovered invertebrate goal-direction neurons that share functional similarities to goal-direction cells reported in mammals. Our results give insights into the evolutionarily conserved principles of goal-directed spatial orientation in animals.}, language = {en} } @article{DjakovicHennigReinischetal.2023, author = {Djakovic, Lara and Hennig, Thomas and Reinisch, Katharina and Milić, Andrea and Whisnant, Adam W. and Wolf, Katharina and Weiß, Elena and Haas, Tobias and Grothey, Arnhild and J{\"u}rges, Christopher S. and Kluge, Michael and Wolf, Elmar and Erhard, Florian and Friedel, Caroline C. and D{\"o}lken, Lars}, title = {The HSV-1 ICP22 protein selectively impairs histone repositioning upon Pol II transcription downstream of genes}, series = {Nature Communications}, volume = {14}, journal = {Nature Communications}, doi = {10.1038/s41467-023-40217-w}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-358161}, year = {2023}, abstract = {Herpes simplex virus 1 (HSV-1) infection and stress responses disrupt transcription termination by RNA Polymerase II (Pol II). In HSV-1 infection, but not upon salt or heat stress, this is accompanied by a dramatic increase in chromatin accessibility downstream of genes. Here, we show that the HSV-1 immediate-early protein ICP22 is both necessary and sufficient to induce downstream open chromatin regions (dOCRs) when transcription termination is disrupted by the viral ICP27 protein. This is accompanied by a marked ICP22-dependent loss of histones downstream of affected genes consistent with impaired histone repositioning in the wake of Pol II. Efficient knock-down of the ICP22-interacting histone chaperone FACT is not sufficient to induce dOCRs in ΔICP22 infection but increases dOCR induction in wild-type HSV-1 infection. Interestingly, this is accompanied by a marked increase in chromatin accessibility within gene bodies. We propose a model in which allosteric changes in Pol II composition downstream of genes and ICP22-mediated interference with FACT activity explain the differential impairment of histone repositioning downstream of genes in the wake of Pol II in HSV-1 infection.}, language = {en} } @article{HaakeHaackSchaeferetal.2023, author = {Haake, Markus and Haack, Beatrice and Sch{\"a}fer, Tina and Harter, Patrick N. and Mattavelli, Greta and Eiring, Patrick and Vashist, Neha and Wedekink, Florian and Genssler, Sabrina and Fischer, Birgitt and Dahlhoff, Julia and Mokhtari, Fatemeh and Kuzkina, Anastasia and Welters, Marij J. P. and Benz, Tamara M. and Sorger, Lena and Thiemann, Vincent and Almanzar, Giovanni and Selle, Martina and Thein, Klara and Sp{\"a}th, Jacob and Gonzalez, Maria Cecilia and Reitinger, Carmen and Ipsen-Escobedo, Andrea and Wistuba-Hamprecht, Kilian and Eichler, Kristin and Filipski, Katharina and Zeiner, Pia S. and Beschorner, Rudi and Goedemans, Renske and Gogolla, Falk Hagen and Hackl, Hubert and Rooswinkel, Rogier W. and Thiem, Alexander and Romer Roche, Paula and Joshi, Hemant and P{\"u}hringer, Dirk and W{\"o}ckel, Achim and Diessner, Joachim E. and R{\"u}diger, Manfred and Leo, Eugen and Cheng, Phil F. and Levesque, Mitchell P. and Goebeler, Matthias and Sauer, Markus and Nimmerjahn, Falk and Schuberth-Wagner, Christine and Felten, Stefanie von and Mittelbronn, Michel and Mehling, Matthias and Beilhack, Andreas and van der Burg, Sjoerd H. and Riedel, Angela and Weide, Benjamin and Dummer, Reinhard and Wischhusen, J{\"o}rg}, title = {Tumor-derived GDF-15 blocks LFA-1 dependent T cell recruitment and suppresses responses to anti-PD-1 treatment}, series = {Nature Communications}, volume = {14}, journal = {Nature Communications}, doi = {10.1038/s41467-023-39817-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-357333}, year = {2023}, abstract = {Immune checkpoint blockade therapy is beneficial and even curative for some cancer patients. However, the majority don't respond to immune therapy. Across different tumor types, pre-existing T cell infiltrates predict response to checkpoint-based immunotherapy. Based on in vitro pharmacological studies, mouse models and analyses of human melanoma patients, we show that the cytokine GDF-15 impairs LFA-1/β2-integrin-mediated adhesion of T cells to activated endothelial cells, which is a pre-requisite of T cell extravasation. In melanoma patients, GDF-15 serum levels strongly correlate with failure of PD-1-based immune checkpoint blockade therapy. Neutralization of GDF-15 improves both T cell trafficking and therapy efficiency in murine tumor models. Thus GDF-15, beside its known role in cancer-related anorexia and cachexia, emerges as a regulator of T cell extravasation into the tumor microenvironment, which provides an even stronger rationale for therapeutic anti-GDF-15 antibody development.}, language = {en} } @article{SalehiZarePrezzaetal.2023, author = {Salehi, Saeede and Zare, Abdolhossein and Prezza, Gianluca and Bader, Jakob and Schneider, Cornelius and Fischer, Utz and Meissner, Felix and Mann, Matthias and Briese, Michael and Sendtner, Michael}, title = {Cytosolic Ptbp2 modulates axon growth in motoneurons through axonal localization and translation of Hnrnpr}, series = {Nature Communications}, volume = {14}, journal = {Nature Communications}, doi = {10.1038/s41467-023-39787-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-357639}, year = {2023}, abstract = {The neuronal RNA-binding protein Ptbp2 regulates neuronal differentiation by modulating alternative splicing programs in the nucleus. Such programs contribute to axonogenesis by adjusting the levels of protein isoforms involved in axon growth and branching. While its functions in alternative splicing have been described in detail, cytosolic roles of Ptbp2 for axon growth have remained elusive. Here, we show that Ptbp2 is located in the cytosol including axons and growth cones of motoneurons, and that depletion of cytosolic Ptbp2 affects axon growth. We identify Ptbp2 as a major interactor of the 3' UTR of Hnrnpr mRNA encoding the RNA-binding protein hnRNP R. Axonal localization of Hnrnpr mRNA and local synthesis of hnRNP R protein are strongly reduced when Ptbp2 is depleted, leading to defective axon growth. Ptbp2 regulates hnRNP R translation by mediating the association of Hnrnpr with ribosomes in a manner dependent on the translation factor eIF5A2. Our data thus suggest a mechanism whereby cytosolic Ptbp2 modulates axon growth by fine-tuning the mRNA transport and local synthesis of an RNA-binding protein.}, language = {en} } @article{BachertScheiner2023, author = {Bachert, Antonia and Scheiner, Ricarda}, title = {The ant's weapon improves honey bee learning performance}, series = {Scientific Reports}, volume = {13}, journal = {Scientific Reports}, doi = {10.1038/s41598-023-35540-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-358064}, year = {2023}, abstract = {Formic acid is the main component of the ant's major weapon against enemies. Being mainly used as a chemical defense, the acid is also exploited for recruitment and trail marking. The repelling effect of the organic acid is used by some mammals and birds which rub themselves in the acid to eliminate ectoparasites. Beekeepers across the world rely on this effect to control the parasitic mite Varroa destructor. Varroa mites are considered the most destructive pest of honey bees worldwide and can lead to the loss of entire colonies. Formic acid is highly effective against Varroa mites but can also kill the honeybee queen and worker brood. Whether formic acid can also affect the behavior of honey bees is unknown. We here study the effect of formic acid on sucrose responsiveness and cognition of honey bees treated at different live stages in field-relevant doses. Both behaviors are essential for survival of the honey bee colony. Rather unexpectedly, formic acid clearly improved the learning performance of the bees in appetitive olfactory conditioning, while not affecting sucrose responsiveness. This exciting side effect of formic acid certainly deserves further detailed investigations.}, language = {en} } @article{KarpatiDeutschKissetal.2023, author = {K{\´a}rp{\´a}ti, Zsolt and Deutsch, Ferenc and Kiss, Bal{\´a}zs and Schmitt, Thomas}, title = {Seasonal changes in photoperiod and temperature lead to changes in cuticular hydrocarbon profiles and affect mating success in Drosophila suzukii}, series = {Scientific Reports}, volume = {13}, journal = {Scientific Reports}, doi = {10.1038/s41598-023-32652-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-358095}, year = {2023}, abstract = {Seasonal plasticity in insects is often triggered by temperature and photoperiod changes. When climatic conditions become sub-optimal, insects might undergo reproductive diapause, a form of seasonal plasticity delaying the development of reproductive organs and activities. During the reproductive diapause, the cuticular hydrocarbon (CHC) profile, which covers the insect body surface, might also change to protect insects from desiccation and cold temperature. However, CHCs are often important cues and signals for mate recognition and changes in CHC composition might affect mate recognition. In the present study, we investigated the CHC profile composition and the mating success of Drosophila suzukii in 1- and 5-day-old males and females of summer and winter morphs. CHC compositions differed with age and morphs. However, no significant differences were found between the sexes of the same age and morph. The results of the behavioral assays show that summer morph pairs start to mate earlier in their life, have a shorter mating duration, and have more offspring compared to winter morph pairs. We hypothesize that CHC profiles of winter morphs are adapted to survive winter conditions, potentially at the cost of reduced mate recognition cues.}, language = {en} } @article{FrankKesnerLibertietal.2023, author = {Frank, Erik T. and Kesner, Lucie and Liberti, Joanito and Helleu, Quentin and LeBoeuf, Adria C. and Dascalu, Andrei and Sponsler, Douglas B. and Azuma, Fumika and Economo, Evan P. and Waridel, Patrice and Engel, Philipp and Schmitt, Thomas and Keller, Laurent}, title = {Targeted treatment of injured nestmates with antimicrobial compounds in an ant society}, series = {Nature Communications}, volume = {14}, journal = {Nature Communications}, doi = {10.1038/s41467-023-43885-w}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-358081}, year = {2023}, abstract = {Infected wounds pose a major mortality risk in animals. Injuries are common in the ant Megaponera analis, which raids pugnacious prey. Here we show that M. analis can determine when wounds are infected and treat them accordingly. By applying a variety of antimicrobial compounds and proteins secreted from the metapleural gland to infected wounds, workers reduce the mortality of infected individuals by 90\%. Chemical analyses showed that wound infection is associated with specific changes in the cuticular hydrocarbon profile, thereby likely allowing nestmates to diagnose the infection state of injured individuals and apply the appropriate antimicrobial treatment. This study demonstrates that M. analis ant societies use antimicrobial compounds produced in the metapleural glands to treat infected wounds and reduce nestmate mortality.}, language = {en} } @article{MaichlKirnerBecketal.2023, author = {Maichl, Daniela Simone and Kirner, Julius Arthur and Beck, Susanne and Cheng, Wen-Hui and Krug, Melanie and Kuric, Martin and Ade, Carsten Patrick and Bischler, Thorsten and Jakob, Franz and Hose, Dirk and Seckinger, Anja and Ebert, Regina and Jundt, Franziska}, title = {Identification of NOTCH-driven matrisome-associated genes as prognostic indicators of multiple myeloma patient survival}, series = {Blood Cancer Journal}, volume = {13}, journal = {Blood Cancer Journal}, doi = {10.1038/s41408-023-00907-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-357598}, year = {2023}, abstract = {No abstract available.}, language = {en} }