@article{SimonRauskolbGunnersenetal.2015, author = {Simon, Christian M. and Rauskolb, Stefanie and Gunnersen, Jennifer M. and Holtmann, Bettina and Drepper, Carsten and Dombert, Benjamin and Braga, Massimiliano and Wiese, Stefan and Jablonka, Sibylle and P{\"u}hringer, Dirk and Zielasek, J{\"u}rgen and Hoeflich, Andreas and Silani, Vincenzo and Wolf, Eckhard and Kneitz, Susanne and Sommer, Claudia and Toyka, Klaus V. and Sendtner, Michael}, title = {Dysregulated IGFBP5 expression causes axon degeneration and motoneuron loss in diabetic neuropathy}, series = {Acta Neuropathologica}, volume = {130}, journal = {Acta Neuropathologica}, doi = {10.1007/s00401-015-1446-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-154569}, pages = {373 -- 387}, year = {2015}, abstract = {Diabetic neuropathy (DNP), afflicting sensory and motor nerve fibers, is a major complication in diabetes.The underlying cellular mechanisms of axon degeneration are poorly understood. IGFBP5, an inhibitory binding protein for insulin-like growth factor 1 (IGF1) is highly up-regulated in nerve biopsies of patients with DNP. We investigated the pathogenic relevance of this finding in transgenic mice overexpressing IGFBP5 in motor axons and sensory nerve fibers. These mice develop motor axonopathy and sensory deficits similar to those seen in DNP. Motor axon degeneration was also observed in mice in which the IGF1 receptor(IGF1R) was conditionally depleted in motoneurons, indicating that reduced activity of IGF1 on IGF1R in motoneurons is responsible for the observed effect. These data provide evidence that elevated expression of IGFBP5 in diabetic nerves reduces the availability of IGF1 for IGF1R on motor axons, thus leading to progressive neurodegeneration. Inhibition of IGFBP5 could thus offer novel treatment strategies for DNP.}, language = {en} } @article{DopplerSchusterAppeltshauseretal.2019, author = {Doppler, Kathrin and Schuster, Yasmin and Appeltshauser, Luise and Biko, Lydia and Villmann, Carmen and Weishaupt, Andreas and Werner, Christian and Sommer, Claudia}, title = {Anti-CNTN1 IgG3 induces acute conduction block and motor deficits in a passive transfer rat model}, series = {Journal of Neuroinflammation}, volume = {16}, journal = {Journal of Neuroinflammation}, number = {73}, doi = {10.1186/s12974-019-1462-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-200476}, year = {2019}, abstract = {Background: Autoantibodies against the paranodal protein contactin-1 have recently been described in patients with severe acute-onset autoimmune neuropathies and mainly belong to the IgG4 subclass that does not activate complement. IgG3 anti-contactin-1 autoantibodies are rare, but have been detected during the acute onset of disease in some cases. There is evidence that anti-contactin-1 prevents adhesive interaction, and chronic exposure to anti-contactin-1 IgG4 leads to structural changes at the nodes accompanied by neuropathic symptoms. However, the pathomechanism of acute onset of disease and the pathogenic role of IgG3 anti-contactin-1 is largely unknown. Methods: In the present study, we aimed to model acute autoantibody exposure by intraneural injection of IgG of patients with anti-contacin-1 autoantibodies to Lewis rats. Patient IgG obtained during acute onset of disease (IgG3 predominant) and IgG from the chronic phase of disease (IgG4 predominant) were studied in comparison. Results: Conduction blocks were measured in rats injected with the "acute" IgG more often than after injection of "chronic" IgG (83.3\% versus 35\%) and proved to be reversible within a week after injection. Impaired nerve conduction was accompanied by motor deficits in rats after injection of the "acute" IgG but only minor structural changes of the nodes. Paranodal complement deposition was detected after injection of the "acute IgG". We did not detect any inflammatory infiltrates, arguing against an inflammatory cascade as cause of damage to the nerve. We also did not observe dispersion of paranodal proteins or sodium channels to the juxtaparanodes as seen in patients after chronic exposure to anti-contactin-1. Conclusions: Our data suggest that anti-contactin-1 IgG3 induces an acute conduction block that is most probably mediated by autoantibody binding and subsequent complement deposition and may account for acute onset of disease in these patients. This supports the notion of anti-contactin-1-associated neuropathy as a paranodopathy with the nodes of Ranvier as the site of pathogenesis.}, language = {en} }