@article{WuZhaoHochreinetal.2023, author = {Wu, Hao and Zhao, Xiufeng and Hochrein, Sophia M. and Eckstein, Miriam and Gubert, Gabriela F. and Kn{\"o}pper, Konrad and Mansilla, Ana Maria and {\"O}ner, Arman and Doucet-Ladev{\`e}ze, Remi and Schmitz, Werner and Ghesqui{\`e}re, Bart and Theurich, Sebastian and Dudek, Jan and Gasteiger, Georg and Zernecke, Alma and Kobold, Sebastian and Kastenm{\"u}ller, Wolfgang and Vaeth, Martin}, title = {Mitochondrial dysfunction promotes the transition of precursor to terminally exhausted T cells through HIF-1α-mediated glycolytic reprogramming}, series = {Nature Communications}, volume = {14}, journal = {Nature Communications}, doi = {10.1038/s41467-023-42634-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-358052}, year = {2023}, abstract = {T cell exhaustion is a hallmark of cancer and persistent infections, marked by inhibitory receptor upregulation, diminished cytokine secretion, and impaired cytolytic activity. Terminally exhausted T cells are steadily replenished by a precursor population (Tpex), but the metabolic principles governing Tpex maintenance and the regulatory circuits that control their exhaustion remain incompletely understood. Using a combination of gene-deficient mice, single-cell transcriptomics, and metabolomic analyses, we show that mitochondrial insufficiency is a cell-intrinsic trigger that initiates the functional exhaustion of T cells. At the molecular level, we find that mitochondrial dysfunction causes redox stress, which inhibits the proteasomal degradation of hypoxia-inducible factor 1α (HIF-1α) and promotes the transcriptional and metabolic reprogramming of Tpex cells into terminally exhausted T cells. Our findings also bear clinical significance, as metabolic engineering of chimeric antigen receptor (CAR) T cells is a promising strategy to enhance the stemness and functionality of Tpex cells for cancer immunotherapy.}, language = {en} } @article{EndresKneitzOrthetal.2016, author = {Endres, Marcel and Kneitz, Susanne and Orth, Martin F. and Perera, Ruwan K. and Zernecke, Alma and Butt, Elke}, title = {Regulation of matrix metalloproteinases (MMPs) expression and secretion in MDA-MB-231 breast cancer cells by LIM and SH3 protein 1 (LASP1)}, series = {Oncotarget}, volume = {7}, journal = {Oncotarget}, number = {39}, doi = {10.18632/oncotarget.11720}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-176920}, pages = {64244-64259}, year = {2016}, abstract = {The process of tumor invasion requires degradation of extracellular matrix by proteolytic enzymes. Cancer cells form protrusive invadopodia, which produce and release matrix metalloproteinases (MMPs) to degrade the basement membrane thereby enabling metastasis. We investigated the effect of LASP1, a newly identified protein in invadopodia, on expression, secretion and activation of MMPs in invasive breast tumor cell lines. By analyzing microarray data of in-house generated control and LASP1-depleted MDA-MB-231 breast cancer cells, we observed downregulation of MMP1, -3 and -9 upon LASP1 depletion. This was confirmed by Western blot analysis. Conversely, rescue experiments restored in part MMP expression and secretion. The regulatory effect of LASP1 on MMP expression was also observed in BT-20 breast cancer cells as well as in prostate and bladder cancer cell lines. In line with bioinformatic FunRich analysis of our data, which mapped a high regulation of transcription factors by LASP1, public microarray data analysis detected a correlation between high LASP1 expression and enhanced c-Fos levels, a protein that is part of the transcription factor AP-1 and known to regulate MMP expression. Compatibly, in luciferase reporter assays, AP-1 showed a decreased transcriptional activity after LASP1 knockdown. Zymography assays and Western blot analysis revealed an additional promotion of MMP secretion into the extracellular matrix by LASP1, thus, most likely, altering the microenvironment during cancer progression. The newly identified role of LASP1 in regulating matrix degradation by affecting MMP transcription and secretion elucidated the migratory potential of LASP1 overexpressing aggressive tumor cells in earlier studies.}, language = {en} }