@phdthesis{Mayr2021, author = {Mayr, Antonia Veronika}, title = {Following Bees and Wasps up Mt. Kilimanjaro: From Diversity and Traits to hidden Interactions of Species}, doi = {10.25972/OPUS-18292}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-182922}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Chapter 1 - General Introduction One of the greatest challenges of ecological research is to predict the response of ecosystems to global change; that is to changes in climate and land use. A complex question in this context is how changing environmental conditions affect ecosystem processes at different levels of communities. To shed light on this issue, I investigate drivers of biodiversity on the level of species richness, functional traits and species interactions in cavity-nesting Hymenoptera. For this purpose, I take advantage of the steep elevational gradient of Mt. Kilimanjaro that shows strong environmental changes on a relatively small spatial scale and thus, provides a good environmental scenario for investigating drivers of diversity. In this thesis, I focus on 1) drivers of species richness at different trophic levels (Chapter 2); 2) seasonal patterns in nest-building activity, life-history traits and ecological rates in three different functional groups and at different elevations (Chapter 3) and 3) changes in cuticular hydrocarbons, pollen composition and microbiomes in Lasioglossum bees caused by climatic variables (Chapter 4). Chapter 2 - Climate and food resources shape species richness and trophic interactions of cavity-nesting Hymenoptera Drivers of species richness have been subject to research for centuries. Temperature, resource availability and top-down regulation as well as the impact of land use are considered to be important factors in determining insect diversity. Yet, the relative importance of each of these factors is unknown. Using trap nests along the elevational gradient of Mt. Kilimanjaro, we tried to disentangle drivers of species richness at different trophic levels. Temperature was the major driver of species richness across trophic levels, with increasing importance of food resources at higher trophic levels in natural antagonists. Parasitism rate was both related to temperature and trophic level, indicating that the relative importance of bottom-up and top-down forces might shift with climate change. Chapter 3 - Seasonal variation in the ecology of tropical cavity-nesting Hymenoptera Natural populations fluctuate with the availability of resources, presence of natural enemies and climatic variations. But tropical mountain seasonality is not yet well investigated. We investigated seasonal patterns in nest-building activity, functional traits and ecological rates in three different insect groups at lower and higher elevations separately. Insects were caught with trap nests which were checked monthly during a 17 months period that included three dry and three rainy seasons. Insects were grouped according to their functional guilds. All groups showed strong seasonality in nest-building activity which was higher and more synchronised among groups at lower elevations. Seasonality in nest building activity of caterpillar-hunting and spider-hunting wasps was linked to climate seasonality while in bees it was strongly linked to the availability of flowers, as well as for the survival rate and sex ratio of bees. Finding adaptations to environmental seasonality might imply that further changes in climatic seasonality by climate change could have an influence on life-history traits of tropical mountain species. Chapter 4 - Cryptic species and hidden ecological interactions of halictine bees along an elevational Gradient Strong environmental gradients such as those occurring along mountain slopes are challenging for species. In this context, hidden adaptations or interactions have rarely been considered. We used bees of the genus Lasioglossum as model organisms because Lasioglossum is the only bee genus occurring with a distribution across the entire elevational gradient at Mt. Kilimanjaro. We asked if and how (a) cuticular hydrocarbons (CHC), which act as a desiccation barrier, change in composition and chain length along with changes in temperature and humidity (b), Lasioglossum bees change their pollen diet with changing resource availability, (c) gut microbiota change with pollen diet and climatic conditions, and surface microbiota change with CHC and climatic conditions, respectively, and if changes are rather influenced by turnover in Lasioglossum species along the elevational gradient. We found physiological adaptations with climate in CHC as well as changes in communities with regard to pollen diet and microbiota, which also correlated with each other. These results suggest that complex interactions and feedbacks among abiotic and biotic conditions determine the species composition in a community. Chapter 5 - General Discussion Abiotic and biotic factors drove species diversity, traits and interactions and they worked differently depending on the functional group that has been studied, and whether spatial or temporal units were considered. It is therefore likely, that in the light of global change, different species, traits and interactions will be affected differently. Furthermore, increasing land use intensity could have additional or interacting effects with climate change on biodiversity, even though the potential land-use effects at Mt. Kilimanjaro are still low and not impairing cavity-nesting Hymenoptera so far. Further studies should address species networks which might reveal more sensitive changes. For that purpose, trap nests provide a good model system to investigate effects of global change on multiple trophic levels and may also reveal direct effects of climate change on entire life-history traits when established under different microclimatic conditions. The non-uniform effects of abiotic and biotic conditions on multiple aspects of biodiversity revealed with this study also highlight that evaluating different aspects of biodiversity can give a more comprehensive picture than single observations.}, subject = {land use}, language = {en} } @phdthesis{Koenig2018, author = {K{\"o}nig, Julia Maria}, title = {Fungal grass endophytes and their dependence on land-use intensity}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-163890}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Plant-associated fungi can affect the plants' interaction with herbivores and other microorganisms. For example, many common forage grasses are infected with Epichlo{\"e} endophytes. The endophytes systemically colonize the aerial parts of the plants. They produce bioprotective alkaloids that can negatively affect insects and livestock feeding on the grasses, and interact with other fungal species which living from the plants' nutrients. Environmental conditions strongly influence Epichlo{\"e} endophytes. Endophyte-mediated effects on herbivores are more pronounced under increased temperatures and the endophytes may benefit from land use in managed grasslands. Under the framework of the large-scale German project "Biodiversity Exploratories", I investigated whether infection rates and alkaloid concentrations of Epichlo{\"e} festucae var. lolii in Lolium perenne (Chapter I) and Epichlo{\"e} endophytes (E. uncinata, E. siegelii) in Festuca pratensis (Chapter II) depend on land use and season. Further I analysed, whether foliar fungal assemblages of L. perenne are affected by the presence of Epichlo{\"e} endophytes (Chapter IV).}, subject = {Endophytische Pilze}, language = {en} } @phdthesis{Hoiss2013, author = {Hoiß, Bernhard}, title = {Effects of climate change, extreme events and management on plants, pollinators and mutualistic interaction networks}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-87919}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {I. Climate change comprises average temperatures rise, changes in the distribution of precipitation and an increased amount and intensity of extreme climatic events in the last decades. Considering these serious changes in the abiotic environment it seems obvious that ecosystems also change. Flora and fauna have to adapt to the fast changing conditions, migrate or go extinct. This might result in shifts in biodiversity, species composition, species interactions and in ecosystem functioning and services. Mountains play an important role in the research of these climate impacts. They are hotspots of biodiversity and can be used as powerful natural experiments as they provide, within short distances, the opportunity to research changes in the ecosystem induced by different climatic contexts. In this dissertation two approaches were pursued: i) surveys of biodiversity, trait dominance and assembly rules in communities depending on the climatic context and different management regimes were conducted (chapters II and III) and ii) the effects of experimental climate treatments on essential ecosystem features along the altitudinal gradient were assessed (chapters IV, V and VI). II. We studied the relative importance of management, an altitudinal climatic gradient and their interactions for plant species richness and the dominance of pollination types in 34 alpine grasslands. Species richness peaked at intermediate temperatures and was higher in grazed grasslands compared to non-managed grasslands. We found the climatic context and also management to influence the distribution and dominance structures of wind- and insect-pollinated plants. Our results indicate that extensive grazing maintains high plant diversity over the full subalpine gradient. Rising temperatures may cause an upward shift of the diversity peak of plants and may also result in changed species composition and adaptive potential of pollination types. III. On the same alpine grasslands we studied the impact of the climatic context along an altitudinal gradient on species richness and community assembly in bee communities. Species richness and abundance declined linearly with increasing altitude. Bee species were more closely related at high altitudes than at low altitudes. The proportion of social and ground-nesting species, as well as mean body size and altitudinal range of bees, increased with increasing altitude, whereas the mean geographic distribution decreased. Our results suggest that community assembly at high altitudes is dominated by environmental filtering effects, while the relative importance of competition increases at low altitudes. We conclude that ongoing climate change poses a threat for alpine specialists with adaptations to cool environments but low competitive capacities. IV. We determined the impacts of short-term climate events on flower phenology and assessed whether those impacts differed between lower and higher altitudes. For that we simulated advanced and delayed snowmelt as well as drought events in a multi site experiment along an altitudinal gradient. Flower phenology was strongly affected by altitude, however, this effect declined through the season. The manipulative treatments caused only few changes in flowering phenology. The effects of advanced snowmelt were significantly greater at higher than at lower sites, but altitude did not influence the effect of the other treatments. The length of flowering duration was not significantly influenced by treatments. Our data indicate a rather low risk of drought events on flowering phenology in the Bavarian Alps. V. Changes in the structure of plant-pollinator networks were assessed along an altitudinal gradient combined with the experimental simulation of potential consequences of climate change: extreme drought events, advanced and delayed snowmelt. We found a trend of decreasing specialisation and therefore increasing complexity in networks with increasing altitude. After advanced snowmelt or drought networks were more specialised especially at higher altitudes compared to control plots. Our results show that changes in the network structures after climate manipulations depend on the climatic context and reveal an increasing susceptibility of plant-pollinator networks with increasing altitude. VI. The aim of this study was to determine the combined effects of extreme climatic events and altitude on leaf CN (carbon to nitrogen) ratios and herbivory rates in different plant guilds. We found no overall effect of climate manipulations (extreme drought events, advanced and delayed snowmelt) on leaf CN ratios and herbivory rates. However, plant guilds differed in CN ratios and herbivory rates and responded differently to altitude. CN ratios of forbs (legume and non-legume) decreased with altitude, whereas CN ratios of grasses increased with altitude. Further, CN ratios and herbivory rates increased during the growing season, indicating a decrease of food plant quality during the growing season. Insect herbivory rates were driven by food plant quality. Contrasting altitudinal responses of forbs versus grasses give reason to expect changed dominance structures among plant guilds with ongoing climate change. VII. This dissertation contributes to the understanding of factors that determine the composition and biotic interactions of communities in different climates. The results presented indicate that warmer climates will not only change species richness but also the assembly-rules for plant and bee communities depending on the species' functional traits. Our investigations provide insights in the resilience of different ecosystem features and processes towards climate change and how this resilience depends on the environmental context. It seems that mutualistic interactions are more susceptible to short-term climate events than flowering phenology and antagonistic interactions such as herbivory. However, to draw more general conclusions more empirical data is needed.}, subject = {Klima{\"a}nderung}, language = {en} } @phdthesis{Gebert2022, author = {Gebert, Friederike}, title = {Mammals and dung beetles along elevational and land use gradients on Mount Kilimanjaro: diversity, traits and ecosystem services}, doi = {10.25972/OPUS-19195}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-191950}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Despite belonging to the best described patterns in ecology, the mechanisms driving biodiversity along broad-scale climatic gradients, like the latitudinal gradient in diversity, remain poorly understood. Because of their high biodiversity, restricted spatial ranges, the continuous change in abiotic factors with altitude and their worldwide occurrence, mountains constitute ideal study systems to elucidate the predictors of global biodiversity patterns. However, mountain ecosystems are increasingly threatened by human land use and climate change. Since the consequences of such alterations on mountainous biodiversity and related ecosystem services are hardly known, research along elevational gradients is also of utmost importance from a conservation point of view. In addition to classical biodiversity research focusing on taxonomy, the significance of studying functional traits and their prominence in biodiversity ecosystem functioning (BEF) relationships is increasingly acknowledged. In this dissertation, I explore the patterns and drivers of mammal and dung beetle diversity along elevational and land use gradients on Mt. Kilimanjaro, Tanzania. Furthermore, I investigate the predictors of dung decomposition by dung beetles under different extinction scenarios. Mammals are not only charismatic, they also fulfil important roles in ecosystems. They provide important ecosystem services such as seed dispersal and nutrient cycling by turning over high amounts of biomass. In chapter II, I show that mammal diversity and community biomass both exhibited a unimodal distribution with elevation on Mt.Kilimanjaro and were mainly impacted by primary productivity, a measure of the total food abundance, and the protection status of study plots. Due to their large size and endothermy, mammals, in contrast to most arthopods, are theoretically predicted to be limited by food availability. My results are in concordance with this prediction. The significantly higher diversity and biomass in the Kilimanjaro National Park and in other conservation areas underscore the important role of habitat protection is vital for the conservation of large mammal biodiversity on tropical mountains. Dung beetles are dependent on mammals since they rely upon mammalian dung as a food and nesting resource. Dung beetles are also important ecosystem service providers: they play an important role in nutrient cycling, bioturbation, secondary seed dispersal and parasite suppression. In chapter III, I show that dung beetle diversity declined with elevation while dung beetle abundance followed a hump-shaped pattern along the elevational gradient. In contrast to mammals, dung beetle diversity was primarily predicted by temperature. Despite my attempt to accurately quantifiy mammalian dung resources by calculating mammalian defecation rates, I did not find an influence of dung resource availability on dung beetle richness. Instead, higher temperature translated into higher dung beetle diversity. Apart from being important ecosystem service providers, dung beetles are also model organisms for BEF studies since they rely on a resource which can be quantified easily. In chapter IV, I explore dung decomposition by dung beetles along the elevational gradient by means of an exclosure experiment in the presence of the whole dung beetle community, in the absence of large dung beetles and without any dung beetles. I show that dung decomposition was the highest when the dung could be decomposed by the whole dung beetle community, while dung decomposition was significantly reduced in the sole presence of small dung beetles and the lowest in the absence of dung beetles. Furthermore, I demonstrate that the drivers of dung decomposition were depend on the intactness of the dung beetle community. While body size was the most important driver in the presence of the whole dung beetle community, species richness gained in importance when large dung beetles were excluded. In the most perturbed state of the system with no dung beetles present, temperature was the sole driver of dung decomposition. In conclusion, abiotic drivers become more important predictors of ecosystem services the more the study system is disturbed. In this dissertation, I exemplify that the drivers of diversity along broad-scale climatic gradients on Mt. Kilimanjaro depend on the thermoregulatory strategy of organisms. While mammal diversity was mainly impacted by food/energy resources, dung beetle diversity was mainly limited by temperature. I also demonstrate the importance of protected areas for the preservation of large mammal biodiversity. Furthermore, I show that large dung beetles were disproportionately important for dung decomposition as dung decomposition significantly decreased when large dung beetles were excluded. As regards land use, I did not detect an overall effect on dung beetle and mammal diversity nor on dung beetle-mediated dung decomposition. However, for the most specialised mammal trophic guilds and dung beetle functional groups, negative land use effects were already visible. Even though the current moderate levels of land use on Mt. Kilimanjaro can sustain high levels of biodiversity, the pressure of the human population on Mt. Kilimanjaro is increasing and further land use intensification poses a great threat to biodiversity. In synergy wih land use, climate change is jeopardizing current patterns and levels of biodiversity with the potential to displace communities, which may have unpredictable consequences for ecosystem service provisioning in the future.}, subject = {Kilimandscharo}, language = {en} } @phdthesis{Fricke2022, author = {Fricke, Ute}, title = {Herbivory, predation and pest control in the context of climate and land use}, doi = {10.25972/OPUS-28732}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-287328}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Chapter 1 - General introduction Anthropogenic land-use and climate change are the major drivers of the global biodiversity loss. Yet, biodiversity is essential for human well-being, as we depend on the availability of potable water, sufficient food and further benefits obtained from nature. Each species makes a somewhat unique contribution to these ecosystem services. Furthermore, species tolerate environmental stressors, such as climate change, differently. Thus, biodiversity is both the "engine" and the "insurance" for human well-being in a changing climate. Here, I investigate the effects of temperature and land use on herbivory (Chapter 2), predation (Chapter 3) and pest control (Chapter 4), and at the same time identify features of habitats (e.g. plant richness, proximity to different habitat types) and landscapes (e.g. landscape diversity, proportion of oilseed rape area) as potential management targets in an adaptation strategy to climate change. Finally, I discuss the similarities and differences between factors influencing herbivory, predation and pest control, while placing the observations in the context of climate change as a multifaceted phenomenon, and highlighting starting points for sustainable insect pest management (Chapter 5). Chapter 2 - Plant richness, land use and temperature differently shape invertebrate leaf-chewing herbivory on major plant functional groups Invertebrate herbivores are temperature-sensitive. Rising temperatures increase their metabolic rates and thus their demand for carbon-rich relative to protein-rich resources, which can lead to changes in the diets of generalist herbivores. Here, we quantified leaf-area loss to chewing invertebrates among three plant functional groups (legumes, non-leguminous forbs and grasses), which largely differ in C:N (carbon:nitrogen) ratio. This reseach was conducted along spatial temperature and land-use gradients in open herbaceous vegetation adjacent to different habitat types (forest, grassland, arable field, settlement). Herbivory largely differed among plant functional groups and was higher on legumes than forbs and grasses, except in open areas in forests. There, herbivory was similar among plant functional groups and on legumes lower than in grasslands. Also the presence of many plant families lowered herbivory on legumes. This suggests that open areas in forests and diverse vegetation provide certain protection against leaf damage to some plant families (e.g. legumes). This could be used as part of a conservation strategy for protected species. Overall, the effects of the dominant habitat type in the vicinity and diverse vegetation outweighed those of temperature and large-scale land use (e.g. grassland proportion, landscape diversity) on herbivory of legumes, forbs and grasses at the present time. Chapter 3 - Landscape diversity and local temperature, but not climate, affect arthropod predation among habitat types Herbivorous insects underlie top-down regulation by arthropod predators. Thereby, predation rates depend on predator community composition and behaviour, which is shaped by temperature, plant richness and land use. How the interaction of these factors affects the regulatory performance of predators was unknown. Therefore, we assessed arthropod predation rates on artificial caterpillars along temperature, and land-use gradients. On plots with low local mean temperature (≤ 7°C) often not a single caterpillar was attacked, which may be due to the temperature-dependent inactivity of arthropods. However, multi-annual mean temperature, plant richness and the dominant habitat type in the vicinity did not substantially affect arthropod predation rates. Highest arthropod predation rates were observed in diverse landscapes (2-km scale) independently of the locally dominanting habitat type. As landscape diversity, but not multi-annual mean temperature, affected arthropod predation rates, the diversification of landscapes may also support top-down regulation of herbivores independent of moderate increases of multi-annual mean temperature in the near future. Chapter 4 - Pest control and yield of winter oilseed rape depend on spatiotemporal crop-cover dynamics and flowering onset: implications for global warming Winter oilseed rape is an important oilseed crop in Europe, yet its seed yield is diminished through pests such as the pollen beetle and stem weevils. Damage from pollen beetles depends on pest abundances, but also on the timing of infestation relative to crop development as the bud stage is particularly vulnerable. The development of both oilseed rape and pollen beetles is temperature-dependent, while temperature effects on pest abundances are yet unknown, which brings opportunities and dangers to oilseed rape cropping under increased temperatures. We obtained measures of winter oilseed rape (flowering time, seed yield) and two of its major pests (pollen beetle, stem weevils) for the first time along both land-use and temperature gradients. Infestation with stem weevils was not influenced by any temperature or land-use aspect considered, and natural pest regulation of pollen beetles in terms of parasitism rates of pollen beetle larvae was low (< 30\%), except on three out of 29 plots. Nonetheless, we could identify conditions favouring low pollen beetle abundances per plant and high seed yields. Low pollen beetle densities were favoured by a constant oilseed rape area relative to the preceding year (5-km scale), whereas a strong reduction in area (> 40\%) caused high pest densities (concentration effect). This occurred more frequently in warmer regions, due to drought around sowing, which contributed to increased pollen beetle numbers in those regions. Yet, in warmer regions, oilseed rape flowered early, which possibly led to partial escape from pollen beetle infestation in the most vulnerable bud stage. This is also suggested by higher seed yields of early flowering oilseed rape fields, but not per se at higher temperatures. Thus, early flowering (e.g. cultivar selection) and the interannual coordination of oilseed rape area offer opportunities for environmental-friendly pollen beetle management. Chapter 5 - General discussion Anthropogenic land-use and climate change are major threats to biodiversity, and consequently to ecosystem functions, although I could show that ecosystem functions such as herbivory and predation barely responded to temperature along a spatial gradient at present time. Yet, it is important to keep several points in mind: (i) The high rate of climate warming likely reduces the time that species will have to adapt to temperature in the future; (ii) Beyond mean temperatures, many aspects of climate will change; (iii) The compensation of biodiversity loss through functional redundancy in arthropod communities may be depleted at some point; (iv) Measures of ecosystem functions are limited by methodological filters, so that changes may be captured incompletely. Although much uncertainty of the effects of climate and land-use change on ecosystem functions remains, actions to halt biodiversity loss and to interfere with natural processes in an environmentally friendly way, e.g. reduction of herbivory on crops, are urgently needed. With this thesis, I contribute options to the environment-friendly regulation of herbivory, which are at least to some extent climate resilient, and at the same time make a contribution to halt biodiversity loss. Yet, more research and a transformation process is needed to make human action more sustainable. In terms of crop protection, this means that the most common method of treating pests with fast-acting pesticides is not necessarily the most sustainable. To realize sustainable strategies, collective efforts will be needed targeted at crop damage prevention through reducing pest populations and densities in the medium to long term. The sooner we transform human action from environmentally damaging to biodiversity promoting, the higher is our insurance asset that secures human well-being under a changing climate.}, subject = {{\"O}kologie}, language = {en} }