@phdthesis{Wolf2002, author = {Wolf, Katarina}, title = {Migration of tumor cells and leukocytes in extracellular matrix : proteolytic and nonproteolytic strategies for overcoming tissue barriers}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-5670}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2002}, abstract = {The extracellular matrix within connective tissues represents a structural scaffold as well as a barrier for motile cells, such as invading tumor cells or passenger leukocytes. It remains unclear how different cell types utilize matrix-degrading enzymes for proteolytic migration strategies and, on the other hand, non-proteolytic strategies to overcome 3D fibrillar matrix networks. To monitor cell migration, a 3D collagen model in vitro or the mouse dermis in vivo were used, in combination with time-lapse video-, confocal- or intravital multiphoton-microscopy, and computer-assisted cell tracking. Expression of proteases, including several MMPs, ADAMs, serine proteases and cathepsins, was shown by flow cytometry, Western blot, zymography, and RT-PCR. Protease activity by migrating HT-1080 fibrosarcoma cells resulting in collagenolysis in situ and generation of tube-like matrix defects was detected by three newly developed techniques:(i) quantitative FITC-release from FITC-labelled collagen, (ii) structural alteration of the pyhsical matrix structure (macroscopically and microscopically), and (iii) the visualization of focal in situ cleavage of individual collagen fibers. The results show that highly invasive ollagenolytic cells utilized a spindle-shaped "mesenchymal" migration strategy, which involved beta1 integrindependent interaction with fibers, coclustering of beta1 integrins and matrix metalloproteinases (MMPs) at fiber bundling sites, and the proteolytic generation of a tube-like matrix-defect by MMPs and additional proteases. In contrast to tumor cells, activated T cells migrated through the collagen fiber network by flexible "amoeboid" crawling including a roundish, elliptoid shape and morphological adaptation along collagen fibers, which was independent of collagenase function and fiber degradation. Abrogation of collagenolysis in tumor cells was achieved by a cocktail of broad-spectrum protease inhibitors at non-toxic conditions blocking collagenolysis by up to 95\%. While in T cells protease inhibition induced neither morphodynamic changes nor reduced migration rates, in tumor cells a time-dependent conversion was obtained from proteolytic mesenchymal to non-proteolytic amoeboid migration in collagen lattices in vitro as well as the mouse dermis in vivo monitored by intravital microscopy. Tumor cells vigorously squeezed through matrix gaps and formed constriction rings in regions of narrow space, while the matrix structure remained intact. MMPs were excluded from fiber binding sites and beta1 integrin distribution was non-clustered linear. Besides for fibrosarcoma cells, this mesenchymal-toameboid transition (MAT) was confirmed for epithelial MDA-MB-231 breast carcinoma cells. In conclusion, cells of different origin exhibit significant diversity as well as plasticity of protease function in migration. In tumor cells, MAT could respresent a functionally important cellular and molecular escape pathway in tumor invasion and migration.}, subject = {Zellmigration}, language = {en} } @phdthesis{FetivaMora2023, author = {Fetiva Mora, Maria Camila}, title = {Changes in chromatin accessibility by oncogenic YAP and its relevance for regulation of cell cycle gene expression and cell migration}, doi = {10.25972/OPUS-30291}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-302910}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Various types of cancer involve aberrant cell cycle regulation. Among the pathways responsible for tumor growth, the YAP oncogene, a key downstream effector of the Hippo pathway, is responsible for oncogenic processes including cell proliferation, and metastasis by controlling the expression of cell cycle genes. In turn, the MMB multiprotein complex (which is formed when B-MYB binds to the MuvB core) is a master regulator of mitotic gene expression, which has also been associated with cancer. Previously, our laboratory identified a novel crosstalk between the MMB-complex and YAP. By binding to enhancers of MMB target genes and promoting B-MYB binding to promoters, YAP and MMB co-regulate a set of mitotic and cytokinetic target genes which promote cell proliferation. This doctoral thesis addresses the mechanisms of YAP and MMB mediated transcription, and it characterizes the role of YAP regulated enhancers in transcription of cell cycle genes. The results reported in this thesis indicate that expression of constitutively active, oncogenic YAP5SA leads to widespread changes in chromatin accessibility in untransformed human MCF10A cells. ATAC-seq identified that newly accessible and active regions include YAP-bound enhancers, while the MMB-bound promoters were found to be already accessible and remain open during YAP induction. By means of CRISPR-interference (CRISPRi) and chromatin immuniprecipitation (ChIP), we identified a role of YAP-bound enhancers in recruitment of CDK7 to MMB-regulated promoters and in RNA Pol II driven transcriptional initiation and elongation of G2/M genes. Moreover, by interfering with the YAP-B-MYB protein interaction, we can show that binding of YAP to B-MYB is also critical for the initiation of transcription at MMB-regulated genes. Unexpectedly, overexpression of YAP5SA also leads to less accessible chromatin regions or chromatin closing. Motif analysis revealed that the newly closed regions contain binding motifs for the p53 family of transcription factors. Interestingly, chromatin closing by YAP is linked to the reduced expression and loss of chromatin-binding of the p53 family member Np63. Furthermore, I demonstrate that downregulation of Np63 following expression of YAP is a key step in driving cellular migration. Together, the findings of this thesis provide insights into the role of YAP in the chromatin changes that contribute to the oncogenic activities of YAP. The overexpression of YAP5SA not only leads to the opening of chromatin at YAP-bound enhancers which together with the MMB complex stimulate the expression of G2/M genes, but also promotes the closing of chromatin at ∆Np63 -bound regions in order to lead to cell migration.}, subject = {Chromatin}, language = {en} } @article{DerakhshaniKurzJaptoketal.2019, author = {Derakhshani, Shaghayegh and Kurz, Andreas and Japtok, Lukasz and Schumacher, Fabian and Pilgram, Lisa and Steinke, Maria and Kleuser, Burkhard and Sauer, Markus and Schneider-Schaulies, Sibylle and Avota, Elita}, title = {Measles virus infection fosters dendritic cell motility in a 3D environment to enhance transmission to target cells in the respiratory epithelium}, series = {Frontiers in Immunology}, volume = {10}, journal = {Frontiers in Immunology}, number = {1294}, doi = {10.3389/fimmu.2019.01294}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201818}, year = {2019}, abstract = {Transmission of measles virus (MV) from dendritic to airway epithelial cells is considered as crucial to viral spread late in infection. Therefore, pathways and effectors governing this process are promising targets for intervention. To identify these, we established a 3D respiratory tract model where MV transmission by infected dendritic cells (DCs) relied on the presence of nectin-4 on H358 lung epithelial cells. Access to recipient cells is an important prerequisite for transmission, and we therefore analyzed migration of MV-exposed DC cultures within the model. Surprisingly, enhanced motility toward the epithelial layer was observed for MV-infected DCs as compared to their uninfected siblings. This occurred independently of factors released from H358 cells indicating that MV infection triggered cytoskeletal remodeling associated with DC polarization enforced velocity. Accordingly, the latter was also observed for MV-infected DCs in collagen matrices and was particularly sensitive to ROCK inhibition indicating infected DCs preferentially employed the amoeboid migration mode. This was also implicated by loss of podosomes and reduced filopodial activity both of which were retained in MV-exposed uninfected DCs. Evidently, sphingosine kinase (SphK) and sphingosine-1-phosphate (S1P) as produced in response to virus-infection in DCs contributed to enhanced velocity because this was abrogated upon inhibition of sphingosine kinase activity. These findings indicate that MV infection promotes a push-and-squeeze fast amoeboid migration mode via the SphK/S1P system characterized by loss of filopodia and podosome dissolution. Consequently, this enables rapid trafficking of virus toward epithelial cells during viral exit.}, language = {en} }