@phdthesis{Dornhaus2002, author = {Dornhaus, Anna}, title = {The role of communication in the foraging process of social bees}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-3468}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2002}, abstract = {In the various groups of social bees, different systems of communication about food sources occur. These communication systems are different solutions to a common problem of social insects: efficiently allocating the necessary number of workers first to the task of foraging and second to the most profitable food sources. The solution chosen by each species depends on the particular ecological circumstances as well as the evolutionary history of that species. For example, the outstanding difference between the bumble bee and the honey bee system is that honey bees can communicate the location of profitable food sources to nestmates, which bumble bees cannot. To identify possible selection pressures that could explain this difference, I have quantified the benefits of communicating location in honey bees. I show that these strongly depend on the habitat, and that communicating location might not benefit bees in temperate habitats. This could be due to the differing spatial distributions of resources in different habitats, in particular between temperate and tropical regions. These distributions may be the reason why the mostly temperate-living bumble bees have never evolved a communication system that allows them to transfer information on location of food sources, whereas most tropical social bees (all honey bees and many stingless bees) are able to recruit nestmates to specific points in their foraging range. Nevertheless, I show that in bumble bees the allocation of workers to foraging is also regulated by communication. Successful foragers distribute in the nest a pheromone which alerts other bees to the presence of food. This pheromone stems from a tergite gland, the function of which had not been identified previously. Usage of a pheromone in the nest to alert other individuals to forage has not been described in other social insects, and might constitute a new mode of communicating about food sources. The signal might be modulated depending on the quality of the food source. Bees in the nest sample the nectar that has been brought into the nest. Their decision whether to go out and forage depends not only on the pheromone signal, but also on the quality of the nectar they have sampled. In this way, foraging activity of a bumble bee colony is adjusted to foraging conditions, which means most bees are allocated to foraging only if high-quality food sources are available. In addition, foraging activity is adjusted to the amount of food already stored. In a colony with full honeypots, no new bees are allocated to foraging. These results help us understand how the allocation of workers to the task of food collection is regulated according to external and internal nest conditions in bumble bees.}, subject = {Hummel}, language = {en} } @phdthesis{Pinkert2008, author = {Pinkert, Stefan}, title = {The human proteome is shaped by evolution and interactions}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-35566}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {Das menschliche Genom ist seit 2001 komplett sequenziert. Ein Großteil der Proteine wurde mittlerweile beschrieben und t{\"a}glich werden bioinformatische Vorhersagen praktisch best{\"a}tigt. Als weiteres Großprojekt wurde k{\"u}rzlich die Sequenzierung des Genoms von 1000 Menschen gestartet. Trotzdem ist immer noch wenig {\"u}ber die Evolution des gesamten menschlichen Proteoms bekannt. Proteindom{\"a}nen und ihre Kombinationen sind teilweise sehr detailliert erforscht, aber es wurden noch nicht alle Dom{\"a}nenarchitekturen des Menschen in ihrer Gesamtheit miteinander verglichen. Der verwendete große hochqualitative Datensatz von Protein-Protein-Interaktionen und Komplexen stammt aus dem Jahr 2006 und erm{\"o}glicht es erstmals das menschliche Proteom mit einer vorher nicht m{\"o}glichen Genauigkeit analysieren zu k{\"o}nnen. Hochentwickelte Cluster Algorithmen und die Verf{\"u}gbarkeit von großer Rechenkapazit{\"a}t bef{\"a}higen uns neue Information {\"u}ber Proteinnetzwerke ohne weitere Laborarbeit zu gewinnen. Die vorliegende Arbeit analysiert das menschliche Proteom auf drei verschiedenen Ebenen. Zuerst wurde der Ursprung von Proteinen basierend auf ihrer Dom{\"a}nenarchitektur analysiert, danach wurden Protein-Protein-Interaktionen untersucht und schließlich erfolgte Einteilung der Proteine nach ihren vorhandenen und fehlenden Interaktionen. Die meisten bekannten Proteine enthalten mindestens eine Dom{\"a}ne und die Proteinfunktion ergibt sich aus der Summe der Funktionen der einzelnen enthaltenen Dom{\"a}nen. Proteine, die auf der gleichen Dom{\"a}nenarchitektur basieren, das heißt die die gleichen Dom{\"a}nen in derselben Reihenfolge besitzen, sind homolog und daher aus einem gemeinsamen urspr{\"u}nglichen Protein entstanden. Die Dom{\"a}nenarchitekturen der urspr{\"u}nglichen Proteine wurden f{\"u}r 750000 Proteine aus 1313 Spezies bestimmt. Die Gruppierung von Spezies und ihrer Proteine ergibt sich aus taxonomischen Daten von NCBI-Taxonomy, welche mit zus{\"a}tzlichen Informationen basierend auf molekularen Markern erg{\"a}nzt wurden. Der resultierende Datensatz, bestehend aus 5817 Dom{\"a}nen und 32868 Dom{\"a}nenarchitekturen, war die Grundlage f{\"u}r die Bestimmung des Ursprungs der Proteine aufgrund ihrer Dom{\"a}nenarchitekturen. Es wurde festgestellt, dass nur ein kleiner Teil der neu evolvierten Dom{\"a}nenarchitekturen eines Taxons gleichzeitig auch im selben Taxon neu entstandene Proteindom{\"a}nen enth{\"a}lt. Ein weiteres Ergebnis war, dass Dom{\"a}nenarchitekturen im Verlauf der Evolution l{\"a}nger und komplexer werden, und dass so verschiedene Organismen wie der Fadenwurm, die Fruchtfliege und der Mensch die gleiche Menge an unterschiedlichen Proteinen haben, aber deutliche Unterschiede in der Anzahl ihrer Dom{\"a}nenarchitekturen aufweisen. Der zweite Teil besch{\"a}ftigt sich mit der Frage wie neu entstandene Proteine Bindungen mit dem schon bestehenden Proteinnetzwerk eingehen. In fr{\"u}heren Arbeiten wurde gezeigt, dass das Protein-Interaktions-Netzwerk ein skalenfreies Netz ist. Skalenfreie Netze, wie zum Beispiel das Internet, bestehen aus wenigen Knoten mit vielen Interaktionen, genannt Hubs, und andererseits aus vielen Knoten mit wenigen Interaktionen. Man vermutet, dass zwei Mechanismen zur Entstehung solcher Netzwerke f{\"u}hren. Erstens m{\"u}ssen neue Proteine um auch Teil des Proteinnetzwerkes zu werden mit Proteinen interagieren, die bereits Teil des Netzwerkes sind. Zweitens interagieren die neuen Proteine, gem{\"a}ß der Theorie der bevorzugten Bindung, mit h{\"o}herer Wahrscheinlichkeit mit solchen Proteinen im Netzwerk, die schon an zahlreichen weiteren Protein-Interaktionen beteiligt sind. Die Human Protein Reference Database stellt ein auf Informationen aus in-vivo Experimenten beruhendes Proteinnetzwerk f{\"u}r menschliche Proteine zur Verf{\"u}gung. Basierend auf den in Kapitel I gewonnenen Informationen wurden die Proteine mit dem Ursprungstaxon ihrer Dom{\"a}nenarchitekturen versehen. Dadurch wurde gezeigt, dass ein Protein h{\"a}ufiger mit Proteinen, die im selben Taxon entstanden sind, interagiert, als mit Proteinen, die in anderen Taxa neu aufgetreten sind. Es stellte sich heraus, dass diese Interaktionsraten f{\"u}r alle Taxa deutlich h{\"o}her waren, als durch das Zufallsmodel vorhergesagt wurden. Alle Taxa enthalten den gleichen Anteil an Proteinen mit vielen Interaktionen. Diese zwei Ergebnisse sprechen dagegen, dass die bevorzugte Bindung der alleinige Mechanismus ist, der zum heutigen Aufbau des menschlichen Proteininteraktion-Netzwerks beigetragen hat. Im dritten Teil wurden Proteine basierend auf dem Vorhandensein und der Abwesenheit von Interaktionen in Gruppen eingeteilt. Proteinnetzwerke k{\"o}nnen in kleine hoch vernetzte Teile zerlegt werden, die eine spezifische Funktion aus{\"u}ben. Diese Gruppen k{\"o}nnen mit hoher statistischer Signifikanz berechnet werden, haben meistens jedoch keine biologische Relevanz. Mit einem neuen Algorithmus, welcher zus{\"a}tzlich zu Interaktionen auch Nicht-Interaktionen ber{\"u}cksichtigt, wurde ein Datensatz bestehend aus 8,756 Proteinen und 32,331 Interaktionen neu unterteilt. Eine Einteilung in elf Gruppen zeigte hohe auf Gene Ontology basierte Werte und die Gruppen konnten signifikant einzelnen Zellteilen zugeordnet werden. Eine Gruppe besteht aus Proteinen, welche wenige Interaktionen miteinander aber viele Interaktionen zu zwei benachbarten Gruppen besitzen. Diese Gruppe enth{\"a}lt eine signifikant erh{\"o}hte Anzahl an Transportproteinen und die zwei benachbarten Gruppen haben eine erh{\"o}hte Anzahl an einerseits extrazellul{\"a}ren und andererseits im Zytoplasma und an der Membran lokalisierten Proteinen. Der Algorithmus hat damit unter Beweis gestellt das die Ergebnisse nicht bloß statistisch sondern auch biologisch relevant sind. Wenn wir auch noch weit vom Verst{\"a}ndnis des Ursprungs der Spezies entfernt sind, so hat diese Arbeit doch einen Beitrag zum besseren Verst{\"a}ndnis der Evolution auf dem Level der Proteine geleistet. Im Speziellen wurden neue Erkenntnisse {\"u}ber die Beziehung von Proteindom{\"a}nen und Dom{\"a}nenarchitekturen, sowie ihre Pr{\"a}ferenzen f{\"u}r Interaktionspartner im Interaktionsnetzwerk gewonnen.}, subject = {Evolution}, language = {en} } @phdthesis{Fraune2014, author = {Fraune, Johanna}, title = {The evolutionary history of the mammalian synaptonemal complex}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-100043}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Der Synaptonemalkomplex (SC) ist eine hochkonservierte Proteinstruktur. Er weist eine dreiteili-ge, leiter{\"a}hnliche Organisation auf und ist f{\"u}r die stabile Paarung der homologen Chromosomen w{\"a}hrend der Prophase der ersten meiotischen Teilung verantwortlich, die auch als Synpase be-zeichnet wird. Fehler w{\"a}hrend der Synpase f{\"u}hren zu Aneuploidie oder Apoptose der sich entwi-ckelnden Keimzellen. Seit 1956 ist der SC Gegenstand intensiver Forschung. Seine Existenz wurde in zahlreichen Orga-nismen von der Hefe bis zum Menschen beschrieben. Seine Struktur aus zwei parallel verlaufen-den Lateralelementen (LE), die durch eine Vielzahl von sogenannten Transversalfilamenten (TF) verbunden werden und dem Zentralen Element (CE) in der Mitte des SC ist dabei offensichtlich {\"u}ber die Millionen von Jahren der Evolution erhalten geblieben. Einzelne Proteinkomponenten des SC wurden jedoch nur in wenigen Modelorganismen charakterisiert, darunter Saccharomyces cerevisiae, Arabidopsis thaliana, Drosophila melanogaster, Ceanorhabditis elegans und Mus mus-culus. Unerwarteter Weise gelang es bei dieser Charakterisierung nicht, eine evolution{\"a}re Ver-wandtschaft, d.h. eine Homologie zwischen den Proteinsequenzen der verschiedenen SCs nach-zuweisen. Diese Tatsache sprach gegen die grunds{\"a}tzliche Annahme, dass der SC in der Evolution nur einmal entstanden sei. Diese Arbeit hat sich nun der Aufgabe gewidmet, die Diskrepanz zwischen der hochkonservierten Struktur des SC und seiner augenscheinlich nicht-homologen Proteinzusammensetzung zu l{\"o}sen. Dabei beschr{\"a}nkt sie sich auf die Analyse des Tierreichs. Es ist die erste Studie zur Evolution des SC in Metazoa und demonstriert die Monophylie der S{\"a}uger SC Proteinkomponenten im Tierreich. Die Arbeit zeigt, dass mindestens vier von sieben SC Proteinen der Maus sp{\"a}testens im letzten gemeinsamen Vorfahren der Gewebetiere (Eumetazoa) enstanden sind und auch damals Teil ei-nes urspr{\"u}nglichen SC waren, wie er heute in dem Nesseltier Hydra zu finden ist. Dieser SC weist die typische Struktur auf und besitzt bereits alle notwendigen Komponenten, um die drei Dom{\"a}-nen - LE, TF und CE - zu assemblieren. Dar{\"u}ber hinaus ergaben die einzelnen Phylogenien der verschiedenen SC Proteine der Maus, dass der SC eine sehr dynamische Evolutionsgeschichte durchlaufen hat. Zus{\"a}tzliche Proteine wurden w{\"a}hrend der Entstehung der Bilateria und der Wir-beltiere in den SC integriert, w{\"a}hrend andere urspr{\"u}ngliche Komponenten m{\"o}glicherweise Gen-Duplikationen erfuhren bzw. besonders in der Linie der H{\"a}utungstiere verloren gingen oder sich stark ver{\"a}nderten. Es wird die These aufgestellt, dass die auf den ersten Blick nicht-homologen SC Proteine der Fruchtfliege und des Fadenwurms tats{\"a}chlich doch von den urspr{\"u}nglichen Prote-inenkomponenten abstammen, sich aber aufgrund der rasanten Evolution der Arthropoden und der Nematoden bis zu deren Unkenntlichkeit diversifizierten. Zus{\"a}tzlich stellt die Arbeit Hydra als alternatives wirbelloses Modellsystem f{\"u}r die Meiose- und SC-Forschung zu den {\"u}blichen Modellen D. melanogaster und C. elegans vor. Die k{\"u}rzlich gewon-nenen Erkenntnisse {\"u}ber den Hydra SC sowie der Einsatz der Standard-Methoden in diesem Orga-nismus werden in dem abschließenden Kapitel zusammengefasst und diskutiert.}, subject = {Synaptinemal-Komplex}, language = {en} } @phdthesis{Mitesser2006, author = {Mitesser, Oliver}, title = {The evolution of insect life history strategies in a social context}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-22576}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2006}, abstract = {This thesis extends the classical theoretical work of Macevicz and Oster (1976, expanded by Oster and Wilson, 1978) on adaptive life history strategies in social insects. It focuses on the evolution of dynamic behavioural patterns (reproduction and activity) as a consequence of optimal allocation of energy and time resources. Mathematical modelling is based on detailed empirical observations in the model species Lasioglossum malachurum (Halictidae; Hymenoptera). The main topics are field observations, optimisation models for eusocial life histories, temporal variation in life history decisions, and annual colony cycles of eusocial insects.}, subject = {Schmalbienen}, language = {en} } @phdthesis{Drescher2011, author = {Drescher, Jochen}, title = {The Ecology and Population structure of the invasive Yelllow Crazy Ant Anoplolepis gracilipes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-57332}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {The invasive Yellow Crazy Ant Anoplolepis gracilipes is a widespread tropical ant species which is particularly common in anthropogenically disturbed habitats in South-East Asia and the Indopacific region. Its native range is unknown, and there is little information concerning its social structure as a potential mechanism facilitating invasion as well as its ecology in one of the putative native ranges, South-East Asia. Using mitochondrial DNA sequences, I demonstrated that the majority of the current Indopacific colonies were likely introduced from South-East Asian populations, which in turn may have been introduced much earlier from a yet unidentified native range. By conducting behavioral, genetic and chemical analyses, I found that A. gracilipes supercolonies contain closely related individuals, thus resembling enlarged versions of monogynous, polydomous colonies of other ant species. Furthermore, mutually aggressive A. gracilipes supercolonies were highly differentiated both genetically and chemically, suggesting limited or even absent gene flow between supercolonies. Intranidal mating and colony-budding are most likely the predominant, if not the exclusive mode of reproduction and dispersal strategy of A. gracilipes. Consequently, a positive feedback between genetic, chemical and behavioral traits may further enhance supercolony differentiation though genetic drift and neutral evolution. This potential scenario led to the hypothesis that absent gene flow between different A. gracilipes supercolonies may drive them towards different evolutionary pathways, possibly including speciation. Thus, I examined one potential way by which gene flow between supercolonies of an ant species without nuptial flights may be maintained, i.e. the immigration of sexuals into foreign supercolonies. The results suggest that this option of maintaining gene flow between different supercolonies is likely impaired by severe aggression of workers towards allocolonial sexuals. Moreover, breeding experiments involving males and queens from different supercolonies suggest that A. gracilipes supercolonies may already be on the verge of reproductive isolation, which might lead to the diversification of A. gracilipes into different species. Regarding the ecological consequences of its potential introduction to NE-Borneo, I could show that A. gracilipes supercolonies may affect the local ant fauna. The ant community within supercolonies was less diverse and differed in species composition from areas outside supercolonies. My data suggest that the ecological dominance of A. gracilipes within local ant communities was facilitated by monopolization of food sources within its supercolony territory, achieved by a combination of rapid recruitment, numerical dominance and pronounced interspecific aggression. A. gracilipes' distribution is almost exclusively limited to anthropogenically altered habitat, such as residential and agricultural areas. The rate at which habitat conversion takes place in NE-Borneo will provide A. gracilipes with a rapidly increasing abundance of suitable habitats, thus potentially entailing significant population growth. An potentially increasing population size and ecological dominance, however, are not features that are limited to invasive alien species, but may also occur in native species that become 'pests' in an increasing abundance of anthropogenically altered habitat. Lastly, I detected several ant guests in supercolonies of A. gracilipes. I subsequently describe the relationship between one of them (the cricket Myrmecophilus pallidithorax) and its ant host. By conducting behavioral bioassays and analyses of cuticular hydrocarbon (CHC) profiles, I revealed that although M. pallidithorax is attacked and consumed by A. gracilipes whenever possible, it may evade aggression from its host by a combination of supreme agility and, possibly, chemical deception. This thesis adds to our general understanding of biological invasions by contributing species-specific data on a previously understudied invasive organism, the Yellow Crazy Ant Anoplolepis gracilipes. Introductions which may have occurred a long time ago may make it difficult to determine whether a given species is an introduced invader or a native pest species, as both may have pronounced ecological effects in native species communities. Furthermore, this thesis suggests that supercolonialism in invasive ants may not be an evolutionary dead end, but that it may possibly give rise to new species due to reproductive boundaries between supercolonies evoked by peculiar mating and dispersal strategies.}, subject = {Dem{\"o}kologie}, language = {en} } @phdthesis{Winkel2009, author = {Winkel, Karoline}, title = {Synaptonemalkomplexprotein SYCP1: Bindungspartner, Polymerisationseigenschaften und evolution{\"a}re Aspekte}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-43955}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2009}, abstract = {Synaptonemal Komplexe (SC) sind evolution{\"a}r konservierte, meiosespezifische, protein{\"o}se Strukturen, die maßgeblich an Synapsis, Rekombination und Segregation der homologen Chromosomen beteiligt sind. Sie zeigen eine dreigliedrige strickleiter-artige Organisation, die sich aus i) zwei Lateralelementen (LE), an die das Chromatin der Homologen angelagert ist, ii) zahlreichen Transversalfilamenten (TF), welche die LE in einer reißverschlussartigen Weise miteinander verkn{\"u}pfen, und iii) einem zentralen Element (CE) zusammensetzt. Die Hauptproteinkomponenten der S{\"a}uger-SC sind das Transversalfilamentprotein SYCP1 und die Lateralelementproteine SYCP2 und SYCP3. Wie sich die SC-Struktur zusammenf{\"u}gt war bisher nur wenig verstanden; es war nicht bekannt wie die TF innerhalb der LE-Strukturen verankert sind und dabei die homologen Chromosomen verkn{\"u}pfen. Aufgrund dessen wurde die Interaktion zwischen den Proteinen SYCP1 und SYCP2 untersucht. Mit der Hilfe verschiedenster Interaktionssysteme konnte gezeigt werden, dass der C-Terminus von SYCP1 mit SYCP2 interagieren kann. Aufgrund der Bindungsf{\"a}higkeit zu beiden Proteinen, SYCP1 und SYCP3, kann angenommen werden, dass SYCP2 als Linker zwischen diesen Proteinen fungiert und somit m{\"o}glicherweise das fehlende Bindungsglied zwischen den Lateralelementen und Transversalfilamenten darstellt. Obwohl die SC-Struktur in der Evolution hochkonserviert ist, schien dies nicht f{\"u}r seine Protein-Untereinheiten zuzutreffen. Um die Struktur und Funktion des SC besser verstehen zu k{\"o}nnen, wurde ein Vergleich zwischen den orthologen SYCP1 Proteinen der evolution{\"a}r entfernten Spezies Ratte und Medaka erstellt. Abgesehen von den erheblichen Sequenzunterschieden die sich in 450 Millionen Jahren der Evolution angeh{\"a}uft haben, traten zwei bisher nicht identifizierte Sequenzmotive hervor, CM1 und CM2, die hochgradig konserviert sind. Anhand dieser Motive konnte in Datenbankanalysen erstmals ein Protein in Hydra vulgaris nachgewiesen werden, bei dem es sich um das orthologe Protein von SYCP1 handeln k{\"o}nnte. Im Vergleich mit dem SYCP1 der Ratte zeigten die Proteine aus Medaka und Hydra, neben den hoch konservierten CM1 und CM2, vergleichbare Dom{\"a}nenorganisationen und im heterologen System zudem sehr {\"a}hnliche Polymerisationseigenschaften. Diese Ergebnisse sprechen f{\"u}r eine evolution{\"a}re Konservierung von SYCP1.}, subject = {Meiose}, language = {de} } @unpublished{Dandekar2007, author = {Dandekar, Thomas}, title = {Some general system properties of a living observer and the environment he explores}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-33537}, year = {2007}, abstract = {In a nice assay published in Nature in 1993 the physicist Richard God III started from a human observer and made a number of witty conclusions about our future prospects giving estimates for the existence of the Berlin Wall, the human race and all the rest of the universe. In the same spirit, we derive implications for "the meaning of life, the universe and all the rest" from few principles. Adams´ absurd answer "42" tells the lesson "garbage in / garbage out" - or suggests that the question is non calculable. We show that experience of "meaning" and to decide fundamental questions which can not be decided by formal systems imply central properties of life: Ever higher levels of internal representation of the world and an escalating tendency to become more complex. An observer, "collecting observations" and three measures for complexity are examined. A theory on living systems is derived focussing on their internal representation of information. Living systems are more complex than Kolmogorov complexity ("life is NOT simple") and overcome decision limits (G{\"o}del theorem) for formal systems as illustrated for cell cycle. Only a world with very fine tuned environments allows life. Such a world is itself rather complex and hence excessive large in its space of different states - a living observer has thus a high probability to reside in a complex and fine tuned universe.}, subject = {Komplex }, language = {en} } @phdthesis{Streinzer2013, author = {Streinzer, Martin}, title = {Sexual dimorphism of the sensory systems in bees (Hymenoptera, Apoidea) and the evolution of sex-specific adaptations in the context of mating behavior}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-78689}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Bees have had an intimate relationship with humans for millennia, as pollinators of fruit, vegetable and other crops and suppliers of honey, wax and other products. This relationship has led to an extensive understanding of their ecology and behavior. One of the most comprehensively understood species is the Western honeybee, Apis mellifera. Our understanding of sex-specific investment in other bees, however, has remained superficial. Signals and cues employed in bee foraging and mating behavior are reasonably well understood in only a handful of species and functional adaptations are described in some species. I explored the variety of sensory adaptations in three model systems within the bees. Females share a similar ecology and similar functional morphologies are to be expected. Males, engage mainly in mating behavior. A variety of male mating strategies has been described which differ in their spatiotemporal features and in the signals and cues involved, and thus selection pressures. As a consequence, males' sensory systems are more diverse than those of females. In the first part I studied adaptations of the visual system in honeybees. I compared sex and caste-specific eye morphology among 5 species (Apis andreniformis, A. cerana, A. dorsata, A. florea, A. mellifera). I found a strong correlation between body size and eye size in both female castes. Queens have a relatively reduced visual system which is in line with the reduced role of visual perception in their life history. Workers differed in eye size and functional morphology, which corresponds to known foraging differences among species. In males, the eyes are conspicuously enlarged in all species, but a disproportionate enlargement was found in two species (A. dorsata, A. florea). I further demonstrate a correlation between male visual parameters and mating flight time, and propose that light intensities play an important role in the species-specific timing of mating flights. In the second study I investigated eye morphology differences among two phenotypes of drones in the Western honeybee. Besides normal-sized drones, smaller drones are reared in the colony, and suffer from reduced reproductive success. My results suggest that the smaller phenotype does not differ in spatial resolution of its visual system, but suffers from reduced light and contrast sensitivity which may exacerbate the reduction in reproductive success caused by other factors. In the third study I investigated the morphology of the visual system in bumblebees. I explored the association between male eye size and mating behavior and investigated the diversity of compound eye morphology among workers, queens and males in 11 species. I identified adaptations of workers that correlate with distinct foraging differences among species. Bumblebee queens must, in contrast to honeybees, fulfill similar tasks as workers in the first part of their life, and correspondingly visual parameters are similar among both female castes. Enlarged male eyes are found in several subgenera and have evolved several times independently within the genus, which I demonstrate using phylogenetic informed statistics. Males of these species engage in visually guided mating behavior. I find similarities in the functional eye morphology among large-eyed males in four subgenera, suggesting convergent evolution as adaptation to similar visual tasks. In the remaining species, males do not differ significantly from workers in their eye morphology. In the fourth study I investigated the sexual dimorphism of the visual system in a solitary bee species. Males of Eucera berlandi patrol nesting sites and compete for first access to virgin females. Males have enlarged eyes and better spatial resolution in their frontal eye region. In a behavioral study, I tested the effect of target size and speed on male mate catching success. 3-D reconstructions of the chasing flights revealed that angular target size is an important parameter in male chasing behavior. I discuss similarities to other insects that face similar problems in visual target detection. In the fifth study I examined the olfactory system of E. berlandi. Males have extremely long antennae. To investigate the anatomical grounds of this elongation I studied antennal morphology in detail in the periphery and follow the sexual dimorphism into the brain. Functional adaptations were found in males (e.g. longer antennae, a multiplication of olfactory sensilla and receptor neurons, hypertrophied macroglomeruli, a numerical reduction of glomeruli in males and sexually dimorphic investment in higher order processing regions in the brain), which were similar to those observed in honeybee drones. The similarities and differences are discussed in the context of solitary vs. eusocial lifestyle and the corresponding consequences for selection acting on males.}, subject = {Biene}, language = {en} } @phdthesis{Keller2010, author = {Keller, Alexander}, title = {Secondary (and tertiary) structure of the ITS2 and its application for phylogenetic tree reconstructions and species identification}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-56151}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {Biodiversity may be investigated and explored by the means of genetic sequence information and molecular phylogenetics. Yet, with ribosomal genes, information for phylogenetic studies may not only be retained from the primary sequence, but also from the secondary structure. Software that is able to cope with two dimensional data and designed to answer taxonomic questions has been recently developed and published as a new scientific pipeline. This thesis is concerned with expanding this pipeline by a tool that facialiates the annotation of a ribosomal region, namely the ITS2. We were also able to show that this states a crucial step for secondary structure phylogenetics and for data allocation of the ITS2-database. This resulting freely available tool determines high quality annotations. In a further study, the complete phylogenetic pipeline has been evaluated on a theoretical basis in a comprehensive simulation study. We were able to show that both, the accuracy and the robustness of phylogenetic trees are largely improved by the approach. The second major part of this thesis concentrates on case studies that applied this pipeline to resolve questions in taxonomy and ecology. We were able to determine several independent phylogenies within the green algae that further corroborate the idea that secondary structures improve the obtainable phylogenetic signal, but now from a biological perspective. This approach was applicable in studies on the species and genus level, but due to the conservation of the secondary structure also for investigations on the deeper level of taxonomy. An additional case study with blue butterflies indicates that this approach is not restricted to plants, but may also be used for metazoan phylogenies. The importance of high quality phylogenetic trees is indicated by two ecological studies that have been conducted. By integrating secondary structure phylogenetics, we were able to answer questions about the evolution of ant-plant interactions and of communities of bacteria residing on different plant tissues. Finally, we speculate how phylogenetic methods with RNA may be further enhanced by integration of the third dimension. This has been a speculative idea that was supplemented with a small phylogenetic example, however it shows that the great potential of structural phylogenetics has not been fully exploited yet. Altogether, this thesis comprises aspects of several different biological disciplines, which are evolutionary biology and biodiversity research, community and invasion ecology as well as molecular and structural biology. Further, it is complemented by statistical approaches and development of informatical software. All these different research areas are combined by the means of bioinformatics as the central connective link into one comprehensive thesis.}, subject = {Phylogenie}, language = {en} } @phdthesis{Schilder1999, author = {Schilder, Klaus}, title = {Safer without Sex?}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-1977}, school = {Universit{\"a}t W{\"u}rzburg}, year = {1999}, abstract = {Highly eusocial insect societies, such as all known ants, are typically characterized by a reproductive division of labor between queens, who are inseminated and reproduce, and virgin workers, who engage in foraging, nest maintenance and brood care. In most species workers have little reproductive options left: They usually produce haploid males by arrhenotokous parthenogenesis, both in the queenright and queenless condition. In the phylogenetically primitive subfamily Ponerinae reproductive caste dimorphism is much less pronounced: Ovarian morphology is rather similar in queens and workers, which additionally retain a spermatheca. In many ponerine species workers mate and may have completely replaced the queen caste. This similarity in reproductive potential provides for the evolution of diverse reproductive systems. In addition, it increases the opportunity for reproductive conflicts among nestmates substantially. Only in a handful of ant species, including Platythyrea punctata, workers are also able to rear diploid female offspring from unfertilized eggs by thelytokous parthenogenesis. The small ponerine ant P. punctata (Smith) is the only New World member of the genus reaching as far north as the southern USA, with its center of distribution in Central America and the West Indies. P. punctata occurs in a range of forest habitats including subtropical hardwood forests as well as tropical rain forests. In addition to queens, gamergates and thelytokous workers co-occur in the same species. This remarkable complexity of reproductive strategies makes P. punctata unique within ants and provides an ideal model system for the investigation of reproductive conflicts within the female caste. Colonies are usually found in rotten branches on the forest floor but may also be present in higher strata. Colonies contained on average 60 workers, with a maximum colony size of 148 workers. Queens were present in only ten percent of the colonies collected from Florida, but completely absent both from the populations studied in Barbados and Puerto Rico. Males were generally rare. In addition, morphological intermediates between workers and queens (so-called intercastes) were found in 16 colonies collected in Florida. Their thorax morphology varied from an almost worker-like to an almost queen-like thorax structure. Queen and intercaste size, however, did not differ from those of workers. Although workers taken from colonies directly after collection from the field engaged in aggressive interactions, nestmate discrimination ceased in the laboratory suggesting that recognition cues used are derived from the environment. Only one of six queens dissected was found to be inseminated but not fertile. Instead, in most queenless colonies, a single uninseminated worker monopolized reproduction by means of thelytokous parthenogenesis. A single mated, reproductive worker (gamergate) was found dominating reproduction in the presence of an inseminated alate queen only in one of the Florida colonies. The regulation of reproduction was closely examined in ten experimental groups of virgin laboratory-reared workers, in which one worker typically dominated reproduction by thelytoky despite the presence of several individuals with elongated, developing ovaries. In each group only one worker was observed to oviposit. Conflict over reproduction was intense consisting of ritualized physical aggression between some nestmates including antennal boxing, biting, dragging, leap and immobilization behaviors. The average frequency of interactions was low. Aggressive interactions allowed to construct non-linear matrices of social rank. On average, only five workers were responsible for 90 percent of total agonistic interactions. In 80 percent of the groups the rate of agonistic interactions increased after the experimental removal of the reproductive worker. While antennal boxing and biting were the most frequent forms of agonistic behaviors both before and after the removal, biting and dragging increased significantly after the removal indicating that agonistic interactions increased in intensity. Once a worker obtains a high social status it is maintained without the need for physical aggression. The replacement of reproductives by another worker did however not closely correlate with the new reproductive's prior social status. Age, however, had a profound influence on the individual rate of agonistic interactions that workers initiated. Especially younger adults (up to two month of age) and callows were responsible for the increase in observed aggression after the supersedure of the old reproductive. These individuals have a higher chance to become reproductive since older, foraging workers may not be able to develop their ovaries. Aggressions among older workers ceased with increasing age. Workers that already started to develop their ovaries should pose the greatest threat to any reproductive individual. Indeed, dissection of all experimental group revealed that aggression was significantly more often directed towards both individuals with undeveloped and developing ovaries as compared to workers that had degenerated ovaries. In all experimental groups reproductive dominance was achieved by callows or younger workers not older than four month. Age is a better predictor of reproductive dominance than social status as inferred from physical interactions. Since no overt conflict between genetical identical individuals is expected, in P. punctata the function of agonistic interactions in all-worker colonies, given the predominance of thelytokous parthenogenesis, remains unclear. Physical aggression could alternatively function to facilitate a smooth division of non-reproductive labor thereby increasing overall colony efficiency. Asexuality is often thought to constitute an evolutionary dead end as compared with sexual reproduction because genetic recombination is limited or nonexistent in parthenogenetic populations. Microsatellite markers were developed to investigate the consequences of thelytokous reproduction on the genetic structure of four natural populations of P. punctata. In the analysis of 314 workers taken from 51 colonies, low intraspecific levels of variation at all loci, expressed both as the number of alleles detected and heterozygosities observed, was detected. Surprisingly, there was almost no differentiation within populations. Populations rather had a clonal structure, with all individuals from all colonies usually sharing the same genotype. This low level of genotypic diversity reflects the predominance of thelytoky under natural conditions in four populations of P. punctata. In addition, the specificity of ten dinucleotide microsatellite loci developed for P. punctata was investigated in 29 ant species comprising four different subfamilies by cross-species amplification. Positive amplification was only obtained in a limited number of species indicating that sequences flanking the hypervariable region are often not sufficiently conserved to allow amplification, even within the same genus. The karyotype of P. punctata (2n = 84) is one of the highest chromosome numbers reported in ants so far. A first investigation did not show any indication of polyploidy, a phenomenon which has been reported to be associated with the occurrence of parthenogenesis. Thelytokous parthenogenesis does not appear to be a very common phenomenon in the Hymenoptera. It is patchily distributed and restricted to taxa at the distant tips of phylogenies. Within the Formicidae, thelytoky has been demonstrated only in four phylogenetically very distant species, including P. punctata. Despite its advantages, severe costs and constraints may have restricted its rapid evolution and persistence over time. The mechanisms of thelytokous parthenogenesis and its ecological correlates are reviewed for the known cases in the Hymenoptera. Investigating the occurrence of sexual reproduction in asexual lineages indicates that thelytokous parthenogenesis may not be irreversible. In P. punctata the occasional production of sexuals in some of the colonies may provide opportunity for outbreeding and genetic recombination. Thelytoky can thus function as a conditional reproductive strategy. Thelytoky in P. punctata possibly evolved as an adaptation to the risk of colony orphanage or the foundation of new colonies by fission. The current adaptive value of physical aggression and the production of sexuals in clonal populations, where relatedness asymmetries are virtually absent, however is less clear. Quite contrary, thelytoky could thereby serve as the stepping stone for the subsequent loss of the queen caste in P. punctata. Although P. punctata clearly fulfills all three conditions of eusociality, the evolution of thelytoky is interpreted as a first step in a secondary reverse social evolution towards a social system more primitive than eusociality.}, subject = {Ameisenstaat}, language = {en} }