@article{SchlegelPetersDooseetal.2019, author = {Schlegel, Jan and Peters, Simon and Doose, S{\"o}ren and Schubert-Unkmeir, Alexandra and Sauer, Markus}, title = {Super-resolution microscopy reveals local accumulation of plasma membrane gangliosides at Neisseria meningitidis Invasion Sites}, series = {Frontiers in Cell and Developmental Biology}, volume = {7}, journal = {Frontiers in Cell and Developmental Biology}, number = {194}, doi = {10.3389/fcell.2019.00194}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201639}, year = {2019}, abstract = {Neisseria meningitidis (meningococcus) is a Gram-negative bacterium responsible for epidemic meningitis and sepsis worldwide. A critical step in the development of meningitis is the interaction of bacteria with cells forming the blood-cerebrospinal fluid barrier, which requires tight adhesion of the pathogen to highly specialized brain endothelial cells. Two endothelial receptors, CD147 and the β2-adrenergic receptor, have been found to be sequentially recruited by meningococci involving the interaction with type IV pilus. Despite the identification of cellular key players in bacterial adhesion the detailed mechanism of invasion is still poorly understood. Here, we investigated cellular dynamics and mobility of the type IV pilus receptor CD147 upon treatment with pili enriched fractions and specific antibodies directed against two extracellular Ig-like domains in living human brain microvascular endothelial cells. Modulation of CD147 mobility after ligand binding revealed by single-molecule tracking experiments demonstrates receptor activation and indicates plasma membrane rearrangements. Exploiting the binding of Shiga (STxB) and Cholera toxin B (CTxB) subunits to the two native plasma membrane sphingolipids globotriaosylceramide (Gb3) and raft-associated monosialotetrahexosylganglioside GM1, respectively, we investigated their involvement in bacterial invasion by super-resolution microscopy. Structured illumination microscopy (SIM) and direct stochastic optical reconstruction microscopy (dSTORM) unraveled accumulation and coating of meningococci with GM1 upon cellular uptake. Blocking of CTxB binding sites did not impair bacterial adhesion but dramatically reduced bacterial invasion efficiency. In addition, cell cycle arrest in G1 phase induced by serum starvation led to an overall increase of GM1 molecules in the plasma membrane and consequently also in bacterial invasion efficiency. Our results will help to understand downstream signaling events after initial type IV pilus-host cell interactions and thus have general impact on the development of new therapeutics targeting key molecules involved in infection.}, language = {en} } @article{BrennerGeigerSchlegeletal.2023, author = {Brenner, Daniela and Geiger, Nina and Schlegel, Jan and Diesendorf, Viktoria and Kersting, Louise and Fink, Julian and Stelz, Linda and Schneider-Schaulies, Sibylle and Sauer, Markus and Bodem, Jochen and Seibel, J{\"u}rgen}, title = {Azido-ceramides, a tool to analyse SARS-CoV-2 replication and inhibition — SARS-CoV-2 is inhibited by ceramides}, series = {International Journal of Molecular Sciences}, volume = {24}, journal = {International Journal of Molecular Sciences}, number = {8}, issn = {1422-0067}, doi = {10.3390/ijms24087281}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-313581}, year = {2023}, abstract = {Recently, we have shown that C6-ceramides efficiently suppress viral replication by trapping the virus in lysosomes. Here, we use antiviral assays to evaluate a synthetic ceramide derivative α-NH2-ω-N3-C6-ceramide (AKS461) and to confirm the biological activity of C6-ceramides inhibiting SARS-CoV-2. Click-labeling with a fluorophore demonstrated that AKS461 accumulates in lysosomes. Previously, it has been shown that suppression of SARS-CoV-2 replication can be cell-type specific. Thus, AKS461 inhibited SARS-CoV-2 replication in Huh-7, Vero, and Calu-3 cells up to 2.5 orders of magnitude. The results were confirmed by CoronaFISH, indicating that AKS461 acts comparable to the unmodified C6-ceramide. Thus, AKS461 serves as a tool to study ceramide-associated cellular and viral pathways, such as SARS-CoV-2 infections, and it helped to identify lysosomes as the central organelle of C6-ceramides to inhibit viral replication.}, language = {en} }