@phdthesis{Obermaier2000, author = {Obermaier, Elisabeth}, title = {Coexistence and resource use in space and time in a West African tortoise beetle community}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-1815}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2000}, abstract = {Tropical rain forests and coral reefs are usually regarded as the epitome of complexity and diversity. The mechanisms, however, that allow so many species to coexist continuously, still need to be unraveled. Earlier equilibrium models explain community organization with a strict niche separation and specialization of the single species, achieved mainly by interspecific competition and consecutive resource partitioning. Recent non-equilibrium or stochastic models see stochastic factors ("intermediate disturbances") as more important. Such systems are characterized by broad niche overlaps and an unpredictable species composition. Mechanisms of coexistence are most interesting where species interactions are strongest and species packing is highest. This is the case within a functional group or guild where species use similar resources. In this project a community of seven closely related leaf beetle species (Chrysomelidae: Cassidinae) was investigated which coexist on a common host plant system (fam. Convovulaceae) in a tropical moist savanna (Ivory Coast, Como{\´e}-Nationalpark). A broad overlap in the seasonal phenology of the leaf beetle species stood in contrast to a distinct spatial niche differentiation. The beetle community could be separated in a savanna-group (host plant: Ipomoea) and in a river side group (host plant: Merremia). According to a correspondence analysis the five species at the river side, using a common host plant, Merremia hederacea, proved to be predictable in their species composition. They showed a small scale niche differentiation along the light gradient (microhabitats). Laboratory studies confirmed differences in the tolerance towards high temperatures (up to 50°C in the field). Physiological trade-offs between phenology, microclimate and food quality seem best to describe patterns of resource use of the beetle species. Further a phylogeny based on mt-DNA sequencing of the beetle community was compared to its ecological resource use and the evolution of host plant use was reconstructed}, subject = {Westafrika}, language = {en} } @article{VikukFuchsKrischkeetal.2020, author = {Vikuk, Veronika and Fuchs, Benjamin and Krischke, Markus and Mueller, Martin J. and Rueb, Selina and Krauss, Jochen}, title = {Alkaloid Concentrations of Lolium perenne Infected with Epichlo{\"e} festucae var. lolii with Different Detection Methods—A Re-Evaluation of Intoxication Risk in Germany?}, series = {Journal of Fungi}, volume = {6}, journal = {Journal of Fungi}, number = {3}, issn = {2309-608X}, doi = {10.3390/jof6030177}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-213171}, year = {2020}, abstract = {Mycotoxins in agriculturally used plants can cause intoxication in animals and can lead to severe financial losses for farmers. The endophytic fungus Epichlo{\"e} festucae var. lolii living symbiotically within the cool season grass species Lolium perenne can produce vertebrate and invertebrate toxic alkaloids. Hence, an exact quantitation of alkaloid concentrations is essential to determine intoxication risk for animals. Many studies use different methods to detect alkaloid concentrations, which complicates the comparability. In this study, we showed that alkaloid concentrations of individual plants exceeded toxicity thresholds on real world grasslands in Germany, but not on the population level. Alkaloid concentrations on five German grasslands with high alkaloid levels peaked in summer but were also below toxicity thresholds on population level. Furthermore, we showed that alkaloid concentrations follow the same seasonal trend, regardless of whether plant fresh or dry weight was used, in the field and in a common garden study. However, alkaloid concentrations were around three times higher when detected with dry weight. Finally, we showed that alkaloid concentrations can additionally be biased to different alkaloid detection methods. We highlight that toxicity risks should be analyzed using plant dry weight, but concentration trends of fresh weight are reliable.}, language = {en} } @article{VillagomezNuernbergerRequieretal.2021, author = {Villagomez, Gemma N. and N{\"u}rnberger, Fabian and Requier, Fabrice and Schiele, Susanne and Steffan-Dewenter, Ingo}, title = {Effects of temperature and photoperiod on the seasonal timing of Western honey bee colonies and an early spring flowering plant}, series = {Ecology and Evolution}, volume = {11}, journal = {Ecology and Evolution}, number = {12}, doi = {10.1002/ece3.7616}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-258770}, pages = {7834-7849}, year = {2021}, abstract = {Temperature and photoperiod are important Zeitgebers for plants and pollinators to synchronize growth and reproduction with suitable environmental conditions and their mutualistic interaction partners. Global warming can disturb this temporal synchronization since interacting species may respond differently to new combinations of photoperiod and temperature under future climates, but experimental studies on the potential phenological responses of plants and pollinators are lacking. We simulated current and future combinations of temperature and photoperiod to assess effects on the overwintering and spring phenology of an early flowering plant species (Crocus sieberi) and the Western honey bee (Apis mellifera). We could show that increased mean temperatures in winter and early spring advanced the flowering phenology of C. sieberi and intensified brood rearing activity of A. mellifera but did not advance their brood rearing activity. Flowering phenology of C. sieberi also relied on photoperiod, while brood rearing activity of A. mellifera did not. The results confirm that increases in temperature can induce changes in phenological responses and suggest that photoperiod can also play a critical role in these responses, with currently unknown consequences for real-world ecosystems in a warming climate.}, language = {en} }