@phdthesis{daCruzGueerisoli2021, author = {da Cruz G{\"u}erisoli, Irene Maria}, title = {Investigating the murine meiotic telomere complex TERB1-TERB2-MAJIN: spatial organization and evolutionary history}, doi = {10.25972/OPUS-21056}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-210562}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Einess der faszinierenden Merkmale der meiotischen Prophase I sind die hochkonservierten kr{\"a}ftigen Bewegungen homologer Chromosomen. Diese Bewegungen sind entscheidend f{\"u}r den Erfolg von Schl{\"u}sselereignissen wie die Ausrichtung, Paarung und Rekombination der homologen Chromosomen. Mehrere bisher untersuchte Organismen, darunter S{\"a}ugetiere, W{\"u}rmer, Hefen und Pflanzen, erreichen diese Bewegungen, indem sie die Chromosomenenden an spezialisierten Stellen in der Kernh{\"u}lle verankern. Diese Verankerung erfordert Telomer-Adapterproteine, die bisher in der Spalthefe und der Maus identifiziert wurden. Die meiosespezifischen Telomer-Adapterproteine der Maus, TERB1, TERB2 und MAJIN, sind an der Verankerung des ubiquit{\"a}ren Telomer-Shelterin-protein an den LINC-Komplex beteiligt, mit einem analogen Mechanismus, wie er die Spalthefe beschrieben wird. Obgleich die meiose-spezifischen TelomerAdapterproteine eine wesentliche Rolle spielen, ist der genaue Mechanismus der Verankerung der Telomere an die Kernh{\"u}lle sowie ihre evolution{\"a}re Geschichte bisher noch wenig verstanden. Das Hauptziel dieser Arbeit ist daher die Untersuchung der Organisation des meiosespezifischen TelomerAdapterkomplexes TERB1-TERB2-MAJIN der Maus und dessen Evolutionsgeschichte. Im ersten Teil dieser Arbeit wurde die Organisation des TERB1-TERB2-MAJIN Komplexes mittels hochaufl{\"o}sender Mikroskopie (SIM), an Mausspermatozyten untersucht, sowie die Lokalisation in Bezug auf TRF1 des Telomer-ShelterinKomplexes und die telomerische DNA analysiert. In den Stadien Zygot{\"a}n und Pachyt{\"a}n zeigten die Fluoreszenzsignale eine starke {\"U}berlappung der Verteilung der meiotischen Telomer-Komplex-Proteine, wobei die Organisation von TERB2 an den Chromosomenenden heterogener war als die von TERB1 und MAJIN. Außerdem konnte die TRF1-Lokalisation an den Enden der Lateralelemente (LEs) mit einer griffartigen Anordnung um die TERB1- und MAJIN-Signale im Zygot{\"a}n- und Pachyt{\"a}n-Stadium gezeigt werden. Interessanterweise erwies sich die telomerische DNA als lateral verteilt und teilweise {\"u}berlappend mit der zentralen Verteilung der meiotischen Telomer-Komplex-Proteine an den Enden der LEs. Die Kombination dieser Ergebnisse erlaubte die Beschreibung eines alternativen Modells der Verankerung der Telomer an die Kernh{\"u}lle w{\"a}hrend der meiotischen Prophase I. Der zweite Teil dieser Arbeit analysiert die Evolutionsgeschichte der Mausproteine von TERB1, TERB2 und MAJIN. Die fehlende {\"U}bereinstimmung zwischen den Meiose-spezifische Telomer-Adapteproteinen der Maus und der Spalthefe hat die Frage nach dem evolutionsbedingten Ursprung dieses spezifischen Komplexes aufgeworfen. Um vermeintliche Orthologen der Mausproteinevon TERB1, TERB2 und MAJIN {\"u}ber Metazoen hinweg zu identifizieren, wurden computergest{\"u}tzte Verfahren und phylogenetische Analysen durchgef{\"u}hrt. Dar{\"u}ber hinaus wurden Expressionsstudien implementiert, um ihre potenzielle Funktion w{\"a}hrend der Meiose zu testen. Die Analysen haben ergeben, dass der Meiose-spezifische Telomer-Komplex der Maus sehr alt ist, da er bereits in den Eumetazoen entstand, was auf einen einzigen Ursprung hindeutet. Das Fehlen jeglicher Homologen des meiosespezifischen Telomerkomplexes in Nematoden und die einigen wenigen in Arthropoden nachgewiesenen Kandidaten, deuten darauf hin, dass die Telomer-Adapterproteine in diesen Abstammungslinien verloren/ersetzt oder stark diversifiziert worden sind. Bemerkenswerterweise zeigten Proteindom{\"a}nen von TERB1, TERB2 und MAJIN, die an der Bildung des Komplexes sowie an der Interaktion mit dem Telomer-Shelterin-Protein und den LINC-Komplexen beteiligt sind, eine hohe Sequenz{\"a}hnlichkeit {\"u}ber alle Kladen hinweg. Abschließend lieferte die Genexpression im Nesseltier Hydra vulgaris den Beweis, dass der TERB1-TERB2-MAJIN-Komplex selektiv in der Keimbahn exprimiert wird, was auf die Konservierung meiotischer Funktionen {\"u}ber die gesamte Metazoen-Evolution hinweg hindeutet. Zusammenfassend bietet diese Arbeit bedeutende neue Erkenntnisse hinsichtlich des Meiose-spezifischen Telomer-Adapterkomplex, seines Mechanismus zur Verankerung der Telomer an die Kernh{\"u}lle und die Entschl{\"u}sselung seines Ursprungs in den Metazoen.}, language = {en} } @phdthesis{Boeck2018, author = {B{\"o}ck, Julia}, title = {Differenzielle Methylierungsanalysen mittels verschiedener Next-Generation Sequencing-basierter Techniken: Die Bedeutung von differenziell methylierten Regionen in der menschlichen Hirnevolution und bei der Krebsentstehung}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-164220}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Die Evolution der Primaten zeigt eine Verbindung zwischen der zunehmenden Komplexit{\"a}t des sozialen Verhaltens und der Vergr{\"o}ßerung des humanen Gehirns, insbesondere des pr{\"a}frontalen Cortex. Deshalb stellt der pr{\"a}frontale Cortex bez{\"u}glich der Evolution des Menschen eine der interessantesten Strukturen im humanen Gehirn dar. Es wird angenommen, dass nicht allein die Gr{\"o}ße, sondern auch die Funktion, vor allem das Zusammenspiel von Neuronen und nicht-neuronalen Zellen, wie z.B. Gliazellen, zur Differenzierung des menschlichen Gehirns von dem rezenter Primaten gef{\"u}hrt hat. Daraus l{\"a}sst sich schließen, dass die Gehirnfunktionen {\"u}ber eine ausgeglichene und gut aufeinander abgestimmte transkriptionelle Landschaft kontrolliert werden, die durch ein zugrundeliegendes genetisches und epigentisches R{\"u}ckgrat organisiert ist. In dieser Studie wurden das Methylierungsprofil neuronaler und nicht-neuronaler Zellen des pr{\"a}frontalen Cortex (Brodmann-Areal 10) von drei Menschen und drei Schimpansen miteinander verglichen. Die intra- und interspezifischen differenziell methylierten Regionen (DMRs) waren in bestimmten genomischen Regionen angereichert. Intraspezifische Methylierungsunterschiede zwischen neuronalen und nicht-neuronalen Zellen konnten dreimal h{\"a}ufiger beobachtet werden als interspezifische Unterschiede in den einzelnen Zelltypen. Rund 90\% der humanen intraspezifischen DMRs wiesen eine Hypomethylierung in den neuronalen Zellen im Vergleich zu den nicht-neuronalen Zellen auf. In den intraspezifischen DMRs (Mensch und Schimpanse) waren Gene angereichert, die mit verschiedenen neuropsychiatrischen Erkrankungen assoziiert sind. Der Vergleich zwischen Menschen und Schimpanse in den neuronalen und nicht-neuronalen Zelltypen zeigte eine Anreicherung von Genen mit human-spezifischer Histonsignatur. In den nicht-neuronalen Zellen konnten mehr interspezifische DMRs (n=666) detektiert werden als in den neuronalen Zellen (n=96). Ungef{\"a}hr 95\% der nicht-neuronalen interspezifischen DMRs waren im Menschen, im Vergleich zum Schimpansen, hypermethyliert. Daraus ergibt sich der Eindruck, dass mehrere hundert der nicht-neuronalen Gene w{\"a}hrend der humanen Gehirnevolution einer Methylierungswelle unterlagen. Dies f{\"u}hrt zu der Annahme, dass der Einfluss dieser Ver{\"a}nderungen in den nicht-neuronalen Zellen auf die Verg{\"o}ßerung des menschlichen Gehirns bisher stark untersch{\"a}tzt wurde. Die bekannteste genetische Ursache f{\"u}r erblichen Brust- und Eierstockkrebs sind Mutationen in den Tumorsuppressorgenen (TSG) BRCA1 und BRCA2. Dennoch k{\"o}nnen nur rund 20-25\% der famili{\"a}ren Brustkrebserkrankungen {\"u}ber Keimbahnmutationen in BRCA1/BRCA2 erkl{\"a}rt werden, besonders bei Frauen, deren Erkrankung vor dem vierzigsten Lebensjahr auftritt. Epigenetische Ver{\"a}nderungen, die zu einer aberranten Genexpression f{\"u}hren, spielen ebenfalls eine wichtige Rolle bei der Karzinogenese und der Entwicklung einer Brustkrebserkrankung. Es ist bekannt, dass TSG nicht nur durch den Verlust der Heterozygotie (engl. loss of heterozygosity, LOH) oder homozygote Deletionen, sondern auch durch transkriptionelle Stilllegung via DNA-Methylierung inaktiviert werden k{\"o}nnen. Im Rahmen dieser Arbeit wurde {\"u}berpr{\"u}ft, welchen Einfluss aberrante Methylierungsmuster im Promotorbereich von TSG auf die Brustkrebskarzinogenese und die Expression der Gene haben. F{\"u}r die Quantifizierung der Epimutationen wurden die Promotorbereiche von acht TSG (BRCA1, BRCA2, RAD51C, ATM, PTEN, TP53, MLH1, RB1) und des estrogene receptor (ESR1) Gens, welches eine Rolle in der Tumorprogression spielt, mittels Deep Bisulfite Amplicon Sequencing (DBAS) analysiert. Es wurden Blutproben von zwei unabh{\"a}ngigen BRCA1/BRCA2-mutationsnegativen Brustkrebs (BC)-Patientenkohorten, sowie von zwei unabh{\"a}ngigen alters-gematchten, gesunden Kontrollkohorten untersucht. BC-Kohorte 1 beinhaltet early-onset (EO) BC-Patientinnen. Kohorte 2 enth{\"a}lt BC-Patientinnen mit einem Risiko von >95\% eine heterozygote Mutation in BRCA1/BRCA2 (high-risk, HR) zu tragen. Allele mit >50\% methylierten CpGs werden als funktionell relevante Epimutationen erachtet, da bekannt ist, dass TSG {\"u}ber eine Methylierung im Promotorbereich transkriptionell stillgelegt werden. Im Vergleich zu ESR1 ({\O} Methylierung, 3\%), welches die Methylierungslevel eines durchschnittlichen Promotors wiederspiegelt, zeigten die TSG sehr geringe durchschnittliche Methylierungswerte von weniger als 1\%. Zudem waren die durchschnittlichen Epimutationsraten (EMR; <0,0001-0,1\%) der TSG sehr gering. Mit der Ausnahme von BRCA1, welches eine erh{\"o}hte EMR in der BC-Kohorte verglichen zu den Kontrollen (0,31\% gegen 0,06\%) zeigte, gab es keine signifikanten Gruppenunterschiede zwischen BC-Patientinnen und Kontrollen. Eine von 36 HR BC-Patientinnen zeigte im Vergleich zu den restlichen Proben eine stark erh{\"o}hte EMR von 14,7\% in BRCA1. Rund ein Drittel (15/44) der EO BC-Patientinnen wiesen eine erh{\"o}hte Rate an Einzel-CpG Fehlern in mehreren TSG auf. Die nachfolgenden Expressionsanalysen ergaben eine erniedrigte Expression vieler TSG je analysierter Patientin. Diese Ergebnisse f{\"u}hren zu der Annahme, dass epigenetische Ver{\"a}nderungen in normalen K{\"o}rperzellen als ein m{\"o}glicher Indikator f{\"u}r einen gest{\"o}rten Mechanismus, der f{\"u}r die Aufrechterhaltung des unmethylierten Status und der daraus resultierenden normalen Genexpression zust{\"a}ndig ist, angesehen werden k{\"o}nnen. Dies kann mit einem erh{\"o}hten BC-Risiko assoziiert werden.}, subject = {Epigenetik}, language = {de} } @phdthesis{Fraune2014, author = {Fraune, Johanna}, title = {The evolutionary history of the mammalian synaptonemal complex}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-100043}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Der Synaptonemalkomplex (SC) ist eine hochkonservierte Proteinstruktur. Er weist eine dreiteili-ge, leiter{\"a}hnliche Organisation auf und ist f{\"u}r die stabile Paarung der homologen Chromosomen w{\"a}hrend der Prophase der ersten meiotischen Teilung verantwortlich, die auch als Synpase be-zeichnet wird. Fehler w{\"a}hrend der Synpase f{\"u}hren zu Aneuploidie oder Apoptose der sich entwi-ckelnden Keimzellen. Seit 1956 ist der SC Gegenstand intensiver Forschung. Seine Existenz wurde in zahlreichen Orga-nismen von der Hefe bis zum Menschen beschrieben. Seine Struktur aus zwei parallel verlaufen-den Lateralelementen (LE), die durch eine Vielzahl von sogenannten Transversalfilamenten (TF) verbunden werden und dem Zentralen Element (CE) in der Mitte des SC ist dabei offensichtlich {\"u}ber die Millionen von Jahren der Evolution erhalten geblieben. Einzelne Proteinkomponenten des SC wurden jedoch nur in wenigen Modelorganismen charakterisiert, darunter Saccharomyces cerevisiae, Arabidopsis thaliana, Drosophila melanogaster, Ceanorhabditis elegans und Mus mus-culus. Unerwarteter Weise gelang es bei dieser Charakterisierung nicht, eine evolution{\"a}re Ver-wandtschaft, d.h. eine Homologie zwischen den Proteinsequenzen der verschiedenen SCs nach-zuweisen. Diese Tatsache sprach gegen die grunds{\"a}tzliche Annahme, dass der SC in der Evolution nur einmal entstanden sei. Diese Arbeit hat sich nun der Aufgabe gewidmet, die Diskrepanz zwischen der hochkonservierten Struktur des SC und seiner augenscheinlich nicht-homologen Proteinzusammensetzung zu l{\"o}sen. Dabei beschr{\"a}nkt sie sich auf die Analyse des Tierreichs. Es ist die erste Studie zur Evolution des SC in Metazoa und demonstriert die Monophylie der S{\"a}uger SC Proteinkomponenten im Tierreich. Die Arbeit zeigt, dass mindestens vier von sieben SC Proteinen der Maus sp{\"a}testens im letzten gemeinsamen Vorfahren der Gewebetiere (Eumetazoa) enstanden sind und auch damals Teil ei-nes urspr{\"u}nglichen SC waren, wie er heute in dem Nesseltier Hydra zu finden ist. Dieser SC weist die typische Struktur auf und besitzt bereits alle notwendigen Komponenten, um die drei Dom{\"a}-nen - LE, TF und CE - zu assemblieren. Dar{\"u}ber hinaus ergaben die einzelnen Phylogenien der verschiedenen SC Proteine der Maus, dass der SC eine sehr dynamische Evolutionsgeschichte durchlaufen hat. Zus{\"a}tzliche Proteine wurden w{\"a}hrend der Entstehung der Bilateria und der Wir-beltiere in den SC integriert, w{\"a}hrend andere urspr{\"u}ngliche Komponenten m{\"o}glicherweise Gen-Duplikationen erfuhren bzw. besonders in der Linie der H{\"a}utungstiere verloren gingen oder sich stark ver{\"a}nderten. Es wird die These aufgestellt, dass die auf den ersten Blick nicht-homologen SC Proteine der Fruchtfliege und des Fadenwurms tats{\"a}chlich doch von den urspr{\"u}nglichen Prote-inenkomponenten abstammen, sich aber aufgrund der rasanten Evolution der Arthropoden und der Nematoden bis zu deren Unkenntlichkeit diversifizierten. Zus{\"a}tzlich stellt die Arbeit Hydra als alternatives wirbelloses Modellsystem f{\"u}r die Meiose- und SC-Forschung zu den {\"u}blichen Modellen D. melanogaster und C. elegans vor. Die k{\"u}rzlich gewon-nenen Erkenntnisse {\"u}ber den Hydra SC sowie der Einsatz der Standard-Methoden in diesem Orga-nismus werden in dem abschließenden Kapitel zusammengefasst und diskutiert.}, subject = {Synaptinemal-Komplex}, language = {en} } @phdthesis{Streinzer2013, author = {Streinzer, Martin}, title = {Sexual dimorphism of the sensory systems in bees (Hymenoptera, Apoidea) and the evolution of sex-specific adaptations in the context of mating behavior}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-78689}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Bees have had an intimate relationship with humans for millennia, as pollinators of fruit, vegetable and other crops and suppliers of honey, wax and other products. This relationship has led to an extensive understanding of their ecology and behavior. One of the most comprehensively understood species is the Western honeybee, Apis mellifera. Our understanding of sex-specific investment in other bees, however, has remained superficial. Signals and cues employed in bee foraging and mating behavior are reasonably well understood in only a handful of species and functional adaptations are described in some species. I explored the variety of sensory adaptations in three model systems within the bees. Females share a similar ecology and similar functional morphologies are to be expected. Males, engage mainly in mating behavior. A variety of male mating strategies has been described which differ in their spatiotemporal features and in the signals and cues involved, and thus selection pressures. As a consequence, males' sensory systems are more diverse than those of females. In the first part I studied adaptations of the visual system in honeybees. I compared sex and caste-specific eye morphology among 5 species (Apis andreniformis, A. cerana, A. dorsata, A. florea, A. mellifera). I found a strong correlation between body size and eye size in both female castes. Queens have a relatively reduced visual system which is in line with the reduced role of visual perception in their life history. Workers differed in eye size and functional morphology, which corresponds to known foraging differences among species. In males, the eyes are conspicuously enlarged in all species, but a disproportionate enlargement was found in two species (A. dorsata, A. florea). I further demonstrate a correlation between male visual parameters and mating flight time, and propose that light intensities play an important role in the species-specific timing of mating flights. In the second study I investigated eye morphology differences among two phenotypes of drones in the Western honeybee. Besides normal-sized drones, smaller drones are reared in the colony, and suffer from reduced reproductive success. My results suggest that the smaller phenotype does not differ in spatial resolution of its visual system, but suffers from reduced light and contrast sensitivity which may exacerbate the reduction in reproductive success caused by other factors. In the third study I investigated the morphology of the visual system in bumblebees. I explored the association between male eye size and mating behavior and investigated the diversity of compound eye morphology among workers, queens and males in 11 species. I identified adaptations of workers that correlate with distinct foraging differences among species. Bumblebee queens must, in contrast to honeybees, fulfill similar tasks as workers in the first part of their life, and correspondingly visual parameters are similar among both female castes. Enlarged male eyes are found in several subgenera and have evolved several times independently within the genus, which I demonstrate using phylogenetic informed statistics. Males of these species engage in visually guided mating behavior. I find similarities in the functional eye morphology among large-eyed males in four subgenera, suggesting convergent evolution as adaptation to similar visual tasks. In the remaining species, males do not differ significantly from workers in their eye morphology. In the fourth study I investigated the sexual dimorphism of the visual system in a solitary bee species. Males of Eucera berlandi patrol nesting sites and compete for first access to virgin females. Males have enlarged eyes and better spatial resolution in their frontal eye region. In a behavioral study, I tested the effect of target size and speed on male mate catching success. 3-D reconstructions of the chasing flights revealed that angular target size is an important parameter in male chasing behavior. I discuss similarities to other insects that face similar problems in visual target detection. In the fifth study I examined the olfactory system of E. berlandi. Males have extremely long antennae. To investigate the anatomical grounds of this elongation I studied antennal morphology in detail in the periphery and follow the sexual dimorphism into the brain. Functional adaptations were found in males (e.g. longer antennae, a multiplication of olfactory sensilla and receptor neurons, hypertrophied macroglomeruli, a numerical reduction of glomeruli in males and sexually dimorphic investment in higher order processing regions in the brain), which were similar to those observed in honeybee drones. The similarities and differences are discussed in the context of solitary vs. eusocial lifestyle and the corresponding consequences for selection acting on males.}, subject = {Biene}, language = {en} } @phdthesis{Chaianunporn2012, author = {Chaianunporn, Thotsapol}, title = {Evolution of dispersal and specialization in systems of interacting species}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-76779}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {A metacommunity approach will be a useful framework to assess and predict changes in biodiversity in spatially structured landscapes and changing environments. However, the relationship between two core elements of metacommunity dynamics, dispersal and species interaction are not well understood. Most theoretical studies on dispersal evolution assume that target species are in isolation and do not interact with other species although the species interactions and community structure should have strong interdependence with dispersal. On the one hand, a species interaction can change the cost and benefit structure of dispersing in relation to non-dispersing individuals. On the other hand, with dispersal, an individual can follow respectively avoid species partners. Moreover, it is also important to explore the interdependence between dispersal and species interaction with spatial and temporal heterogeneity of environment because it would allow us to gain more understanding about responses of community to disturbances such as habitat destruction or global climate change, and this aspect is up to now not well-studied. In this thesis, I focus on the interactive and evolutionary feedback effects between dispersal and various types of interspecific interactions in different environmental settings. More specifically, I contrast dispersal evolution in scenarios with different types of interactions (chapter 2), explore the concurrent evolution of dispersal and habitat niche width (specialization) in spatial heterogeneous landscape (chapter 3) and consider (potential) multidimensional evolutionary responses under climate change (chapter 4). Moreover, I investigate consequences of different dispersal probability and group tolerance on group formation respectively group composition and the coexistence of 'marker types' (chapter 5). For all studies, I utilize individual-based models of single or multiple species within spatially explicit (grid-based) landscapes. In chapter 5, I also use an analytical model in addition to an individual-based model to predict phenomenon in group recognition and group formation. ...}, subject = {Tiergesellschaft}, language = {en} } @phdthesis{Kubisch2012, author = {Kubisch, Alexander}, title = {Range border formation in the light of dispersal evolution}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-70639}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Understanding the emergence of species' ranges is one of the most fundamental challenges in ecology. Early on, geographical barriers were identified as obvious natural constraints to the spread of species. However, many range borders occur along gradually changing landscapes, where no sharp barriers are obvious. Mechanistic explanations for this seeming contradiction incorporate environmental gradients that either affect the spatio-temporal variability of conditions or the increasing fragmentation of habitat. Additionally, biological mechanisms like Allee effects (i.e. decreased growth rates at low population sizes or densities), condition-dependent dispersal, and biological interactions with other species have been shown to severely affect the location of range margins. The role of dispersal has been in the focus of many studies dealing with range border formation. Dispersal is known to be highly plastic and evolvable, even over short ecological time-scales. However, only few studies concentrated on the impact of evolving dispersal on range dynamics. This thesis aims at filling this gap. I study the influence of evolving dispersal rates on the persistence of spatially structured populations in environmental gradients and its consequences for the establishment of range borders. More specially I investigate scenarios of range formation in equilibrium, periods of range expansion, and range shifts under global climate change ...}, subject = {Areal}, language = {en} } @phdthesis{Drescher2011, author = {Drescher, Jochen}, title = {The Ecology and Population structure of the invasive Yelllow Crazy Ant Anoplolepis gracilipes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-57332}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {The invasive Yellow Crazy Ant Anoplolepis gracilipes is a widespread tropical ant species which is particularly common in anthropogenically disturbed habitats in South-East Asia and the Indopacific region. Its native range is unknown, and there is little information concerning its social structure as a potential mechanism facilitating invasion as well as its ecology in one of the putative native ranges, South-East Asia. Using mitochondrial DNA sequences, I demonstrated that the majority of the current Indopacific colonies were likely introduced from South-East Asian populations, which in turn may have been introduced much earlier from a yet unidentified native range. By conducting behavioral, genetic and chemical analyses, I found that A. gracilipes supercolonies contain closely related individuals, thus resembling enlarged versions of monogynous, polydomous colonies of other ant species. Furthermore, mutually aggressive A. gracilipes supercolonies were highly differentiated both genetically and chemically, suggesting limited or even absent gene flow between supercolonies. Intranidal mating and colony-budding are most likely the predominant, if not the exclusive mode of reproduction and dispersal strategy of A. gracilipes. Consequently, a positive feedback between genetic, chemical and behavioral traits may further enhance supercolony differentiation though genetic drift and neutral evolution. This potential scenario led to the hypothesis that absent gene flow between different A. gracilipes supercolonies may drive them towards different evolutionary pathways, possibly including speciation. Thus, I examined one potential way by which gene flow between supercolonies of an ant species without nuptial flights may be maintained, i.e. the immigration of sexuals into foreign supercolonies. The results suggest that this option of maintaining gene flow between different supercolonies is likely impaired by severe aggression of workers towards allocolonial sexuals. Moreover, breeding experiments involving males and queens from different supercolonies suggest that A. gracilipes supercolonies may already be on the verge of reproductive isolation, which might lead to the diversification of A. gracilipes into different species. Regarding the ecological consequences of its potential introduction to NE-Borneo, I could show that A. gracilipes supercolonies may affect the local ant fauna. The ant community within supercolonies was less diverse and differed in species composition from areas outside supercolonies. My data suggest that the ecological dominance of A. gracilipes within local ant communities was facilitated by monopolization of food sources within its supercolony territory, achieved by a combination of rapid recruitment, numerical dominance and pronounced interspecific aggression. A. gracilipes' distribution is almost exclusively limited to anthropogenically altered habitat, such as residential and agricultural areas. The rate at which habitat conversion takes place in NE-Borneo will provide A. gracilipes with a rapidly increasing abundance of suitable habitats, thus potentially entailing significant population growth. An potentially increasing population size and ecological dominance, however, are not features that are limited to invasive alien species, but may also occur in native species that become 'pests' in an increasing abundance of anthropogenically altered habitat. Lastly, I detected several ant guests in supercolonies of A. gracilipes. I subsequently describe the relationship between one of them (the cricket Myrmecophilus pallidithorax) and its ant host. By conducting behavioral bioassays and analyses of cuticular hydrocarbon (CHC) profiles, I revealed that although M. pallidithorax is attacked and consumed by A. gracilipes whenever possible, it may evade aggression from its host by a combination of supreme agility and, possibly, chemical deception. This thesis adds to our general understanding of biological invasions by contributing species-specific data on a previously understudied invasive organism, the Yellow Crazy Ant Anoplolepis gracilipes. Introductions which may have occurred a long time ago may make it difficult to determine whether a given species is an introduced invader or a native pest species, as both may have pronounced ecological effects in native species communities. Furthermore, this thesis suggests that supercolonialism in invasive ants may not be an evolutionary dead end, but that it may possibly give rise to new species due to reproductive boundaries between supercolonies evoked by peculiar mating and dispersal strategies.}, subject = {Dem{\"o}kologie}, language = {en} } @phdthesis{Vershenya2010, author = {Vershenya, Stanislav}, title = {Quantitative and qualitative analyses of in-paralogs}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-51358}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {In our analysis I was interested in the gene duplications, with focus on in-paralogs. In-paralogs are gene duplicates which arose after species split. Here I analysed the in-paralogs quantitatively, as well as qualitatively. For quantitative analysis genomes of 21 species were taken. Most of them have vastly different lifestyles with maximum evolutionary distance between them 1100 million years. Species included mammals, fish, insects and worm, plus some other chordates. All the species were pairwised analysed by the Inparanoid software, and in-paralogs matrix were built representing number of in-paralogs in all vs. all manner. Based on the in-paralogs matrix I tried to reconstruct the evolutionary tree using in-paralog numbers as evolutionary distance. If all 21 species were used the resulting tree was very far from real one: a lot of species were misplaced. However if the number was reduced to 12, all of the species were placed correctly with only difference being wrong insect and fish clusters switched. Then to in-paralogs matrix the neighbour-net algorithm was applied. The resulting "net" tree showed the species with fast or slow duplications rates compared to the others. We could identify species with very high or very low duplications frequencies and it correlates with known occurrences of the whole genome duplications. As the next step I built the graphs for every single species showing the correlation between their in-paralogs number and evolutionary distance. As we have 21 species, graph for every species is built using 20 points. Coordinates of the points are set using the evolutionary distance to that particular species and in-paralogs number. In mammals with increasing the distance from speciation the in-paralogs number also increased, however not in linear fashion. In fish and insects the graph close to zero is just the same in mammals' case. However, after reaching the evolutionary distances more than 800 million years the number of inparalogs is beginning to decrease. We also made a simulation of gene duplications for all 21 species and all the splits according to the fossil and molecular clock data from literature. In our simulation duplication frequency was minimal closer to the past and maximum in the near-present time. Resulting curves had the same shape the experimental data ones. In case of fish and insect for simulation the duplication rate coefficient even had to be set negative in order to repeat experimental curve shape. To the duplication rate coefficient in our simulation contribute 2 criteria: gene duplications and gene losses. As gene duplication is stochastical process it should always be a constant. So the changing in the coefficient should be solely explained by the increasing gene loss of old genes. The processes are explained by the evolution model with high gene duplication and loss ratio. The drop in number of in-paralogs is probably due to the BLAST algorithm. It is observed in comparing highly divergent species and BLAST cannot find the orthologs so precisely anymore. In the second part of my work I concentrated more on the specific function of inparalogs. Because such analysis is time-consuming it could be done on the limited number species. Here I used three insects: Drosophila melanogaster (fruit y), Anopheles gambiae (mosquito) and Apis mellifera (honeybee). After Inparnoid analyses and I listed the cluster of orthologs. Functional analyses of all listed genes were done using GO annotations and also KEGG PATHWAY database. We found, that the gene duplication pattern is unique for each species and that this uniqueness is rejected through the differences in functional classes of duplicated genes. The preferences for some classes reject the evolutionary trends of the last 350 million years and allow assumptions on the role of those genes duplications in the lifestyle of species. Furthermore, the observed gene duplications allowed me to find connections between genomic changes and their phenotypic manifestations. For example I found duplications within carbohydrate metabolism rejecting feed pattern adaptation, within photo- and olfactory-receptors indicating sensing adaptation and within troponin indicating adaptations in the development. Despite these species specific differences, found high correlations between the independently duplicated genes between the species. This might hint for a "pool" of genes preferentially duplicated. Taken together, the observed duplication patterns reject the adaptational process and provide us another link to the field of genomic zoology.}, subject = {Duplikation}, language = {en} } @phdthesis{Keller2010, author = {Keller, Alexander}, title = {Secondary (and tertiary) structure of the ITS2 and its application for phylogenetic tree reconstructions and species identification}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-56151}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {Biodiversity may be investigated and explored by the means of genetic sequence information and molecular phylogenetics. Yet, with ribosomal genes, information for phylogenetic studies may not only be retained from the primary sequence, but also from the secondary structure. Software that is able to cope with two dimensional data and designed to answer taxonomic questions has been recently developed and published as a new scientific pipeline. This thesis is concerned with expanding this pipeline by a tool that facialiates the annotation of a ribosomal region, namely the ITS2. We were also able to show that this states a crucial step for secondary structure phylogenetics and for data allocation of the ITS2-database. This resulting freely available tool determines high quality annotations. In a further study, the complete phylogenetic pipeline has been evaluated on a theoretical basis in a comprehensive simulation study. We were able to show that both, the accuracy and the robustness of phylogenetic trees are largely improved by the approach. The second major part of this thesis concentrates on case studies that applied this pipeline to resolve questions in taxonomy and ecology. We were able to determine several independent phylogenies within the green algae that further corroborate the idea that secondary structures improve the obtainable phylogenetic signal, but now from a biological perspective. This approach was applicable in studies on the species and genus level, but due to the conservation of the secondary structure also for investigations on the deeper level of taxonomy. An additional case study with blue butterflies indicates that this approach is not restricted to plants, but may also be used for metazoan phylogenies. The importance of high quality phylogenetic trees is indicated by two ecological studies that have been conducted. By integrating secondary structure phylogenetics, we were able to answer questions about the evolution of ant-plant interactions and of communities of bacteria residing on different plant tissues. Finally, we speculate how phylogenetic methods with RNA may be further enhanced by integration of the third dimension. This has been a speculative idea that was supplemented with a small phylogenetic example, however it shows that the great potential of structural phylogenetics has not been fully exploited yet. Altogether, this thesis comprises aspects of several different biological disciplines, which are evolutionary biology and biodiversity research, community and invasion ecology as well as molecular and structural biology. Further, it is complemented by statistical approaches and development of informatical software. All these different research areas are combined by the means of bioinformatics as the central connective link into one comprehensive thesis.}, subject = {Phylogenie}, language = {en} } @phdthesis{Winkel2009, author = {Winkel, Karoline}, title = {Synaptonemalkomplexprotein SYCP1: Bindungspartner, Polymerisationseigenschaften und evolution{\"a}re Aspekte}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-43955}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2009}, abstract = {Synaptonemal Komplexe (SC) sind evolution{\"a}r konservierte, meiosespezifische, protein{\"o}se Strukturen, die maßgeblich an Synapsis, Rekombination und Segregation der homologen Chromosomen beteiligt sind. Sie zeigen eine dreigliedrige strickleiter-artige Organisation, die sich aus i) zwei Lateralelementen (LE), an die das Chromatin der Homologen angelagert ist, ii) zahlreichen Transversalfilamenten (TF), welche die LE in einer reißverschlussartigen Weise miteinander verkn{\"u}pfen, und iii) einem zentralen Element (CE) zusammensetzt. Die Hauptproteinkomponenten der S{\"a}uger-SC sind das Transversalfilamentprotein SYCP1 und die Lateralelementproteine SYCP2 und SYCP3. Wie sich die SC-Struktur zusammenf{\"u}gt war bisher nur wenig verstanden; es war nicht bekannt wie die TF innerhalb der LE-Strukturen verankert sind und dabei die homologen Chromosomen verkn{\"u}pfen. Aufgrund dessen wurde die Interaktion zwischen den Proteinen SYCP1 und SYCP2 untersucht. Mit der Hilfe verschiedenster Interaktionssysteme konnte gezeigt werden, dass der C-Terminus von SYCP1 mit SYCP2 interagieren kann. Aufgrund der Bindungsf{\"a}higkeit zu beiden Proteinen, SYCP1 und SYCP3, kann angenommen werden, dass SYCP2 als Linker zwischen diesen Proteinen fungiert und somit m{\"o}glicherweise das fehlende Bindungsglied zwischen den Lateralelementen und Transversalfilamenten darstellt. Obwohl die SC-Struktur in der Evolution hochkonserviert ist, schien dies nicht f{\"u}r seine Protein-Untereinheiten zuzutreffen. Um die Struktur und Funktion des SC besser verstehen zu k{\"o}nnen, wurde ein Vergleich zwischen den orthologen SYCP1 Proteinen der evolution{\"a}r entfernten Spezies Ratte und Medaka erstellt. Abgesehen von den erheblichen Sequenzunterschieden die sich in 450 Millionen Jahren der Evolution angeh{\"a}uft haben, traten zwei bisher nicht identifizierte Sequenzmotive hervor, CM1 und CM2, die hochgradig konserviert sind. Anhand dieser Motive konnte in Datenbankanalysen erstmals ein Protein in Hydra vulgaris nachgewiesen werden, bei dem es sich um das orthologe Protein von SYCP1 handeln k{\"o}nnte. Im Vergleich mit dem SYCP1 der Ratte zeigten die Proteine aus Medaka und Hydra, neben den hoch konservierten CM1 und CM2, vergleichbare Dom{\"a}nenorganisationen und im heterologen System zudem sehr {\"a}hnliche Polymerisationseigenschaften. Diese Ergebnisse sprechen f{\"u}r eine evolution{\"a}re Konservierung von SYCP1.}, subject = {Meiose}, language = {de} }