@article{SchartlErbeldingDenkHolteretal.1993, author = {Schartl, Manfred and Erbelding-Denk, Claudia and Holter, Sabine and Nanda, Indrajit and Schmid, Michael and Schroder, Johannes H. and Epplen, J{\"o}rg T.}, title = {Reproductive failure of dominant males in the poeciliid fish Limia perugiae determined by DNA fingerprinting}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-61643}, year = {1993}, abstract = {Hierarchical structures among male indlviduals in a population are frequently reflected ln differences in aggressive and reproductive behavior and access to the females. In general, sodal dominance requires the Investments, which in turn then may have to be compensated for by high reproductive success. However, this hypothesls has so far only been sufficiently tested in small mating groups (one or two males with one or two females) due to the difficulties of determining paternity by conventional methods. DNA fingerprinting overcomes these problems by offering the possibility to determine genetic relationships and mating patterns within larger groups [Borke, T. (1989) Trends Ecol. Evol. 4, 139-144]. We show here that in the poecUiid fish Limia perugitu, in small matlng groups the dominant male has 8 mating success of 100\%, whereas ln larger groups lts contribution to the offspring unexpectedly drops to zero.}, subject = {Physiologische Chemie}, language = {en} } @article{ErbeldingDenkSchroderSchartletal.1994, author = {Erbelding-Denk, Claudia and Schroder, Johannes H. and Schartl, Manfred and Nanda, Indrajit and Schmid, Michael and Epplen, J{\"o}rg T.}, title = {Male polymorphism in Limia perugiae (Pisces: Poeciliidae)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-61573}, year = {1994}, abstract = {The male-polymorphic poeciliid fish, Limia perugiae, a small teleostean endemic to the southeast of the Caribbean island Hispafiola, consists of three male size morphs with uniform females. Large males differentiate at a size va:rying between 25 and 38 mm; intermediate males, between 21 and 25 mm. Under competition, !arge males exhibit an elaborate courtship display, whereas small males show only a sneak-chase behavior. Intermediate males adapt their tactics to the respective competitors. However, all malemorphs can switch from courtship display to sneak-chase behavior. In large mating groups with four males of different size and five or six virgin females, large dominant a-males as weil as small subordinate \(\delta\)-males did not produce any offspring. Unexpectedly, all progeny were sired exclusively by the intemediate subordinate ß- and \(\gamma\)-males. Breeding experiments with the three male morphs can best be explained by a model of Y -linked genes for small and !arge size which are both suspended by the activity of an autosomal recessive repressor responsible for the development of intermediate males. The dominant allele of the recessive repressor, in either its homoorits heterozygous state, activates the Y-chromosomal genes for !arge or small size, respectively. Accordingly, intermediate males may produce male offspring of all size classes, depending on the presence of either the Y-linked gene or the autosomal repressor.}, subject = {Physiologische Chemie}, language = {en} }