@phdthesis{Cruz2006, author = {Cruz, Alexandre Bettencourt da}, title = {Molecular and functional characterization of the swiss-cheese and olk mutants in Drosophila melanogaster : two approaches to killing neurons}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-17734}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2006}, abstract = {In this thesis two genes involved in causing neurodegenerative phenotypes in Drosophila are described. olk (omb-like), a futsch allele, is a micotubule associated protein (MAP) which is homologous to MAP1B and sws (swiss cheese) a serine esterase of yet unknown function within the nervous system. The lack of either one of these genes causes progressive neurodegeneration in two different ways. The sws mutant is characterized by general degeneration of the adult nervous system, glial hyperwrapping and neuronal apoptosis. Deletion of NTE (neuropathy target esterase), the SWS homolog in vertebrates, has been shown to cause a similar pattern of progressive neural degeneration in mice. NTE reacts with organophosphates causing axonal degeneration in humans. Inhibition of vertebrate NTE is insufficient to induce paralyzing axonal degeneration, a reaction called "aging reaction" is necessary for the disease to set in. It is hypothesized that a second "non-esterase" function of NTE is responsible for this phenomenon. The biological function of SWS within the nervous system is still unknown. To characterize the function of this protein several transgenic fly lines expressing different mutated forms of SWS were established. The controlled expression of altered SWS protein with the GAL4/UAS system allowed the analysis of isolated parts of the protein that were altered in the respective constructs. The characterization of a possible non-esterase function was of particular interest in these experiments. One previously described aberrant SWS construct lacking the first 80 amino acids (SWS\&\#916;1-80) showed a deleterious, dominant effect when overexpressed and was used as a model for organophosphate (OP) intoxication. This construct retains part of its detrimental effect even without catalytically active serine esterase function. This strongly suggests that there is another characteristic to SWS that is not defined solely by its serine esterase activity. Experiments analyzing the lipid contents of sws mutant, wildtype (wt) and SWS overexpressing flies gave valuable insights into a possible biological function of SWS. Phosphatidylcholine, a major component of cell membranes, accumulates in sws mutants whereas it is depleted in SWS overexpressing flies. This suggests that SWS is involved in phosphatidylcholine regulation. The produced \&\#945;-SWS antibody made it possible to study the intracellular localization of SWS. Images of double stainings with ER (endoplasmic reticulum) markers show that SWS is in great part localized to the ER. This is consistent with findings of SWS/ NTE localization in yeast and mouse cells. The olk mutant also shows progressive neurodegeneration but it is more localized to the olfactory system and mushroom bodies. Regarding specific cell types it seemed that specifically the projection neurons (PNs) are affected. A behavioral phenotype consisting of poor olfactory memory compared to wt is also observed even before histologically visible neurodegeneration sets in. Considering that the projection neurons connect the antennal lobes to the mushroom bodies, widely regarded as the "learning center", this impairment was expected. Three mutants where identified (olk1-3) by complementation analysis with the previously known futschN94 allele and sequencing of the coding sequence of olk1 revealed a nonsense mutation early in the protein. Consistent with the predicted function of Futsch as a microtubule associated protein (MAP), abnormalities are most likely due to a defective microtubule network and defects in axonal transport. In histological sections a modified cytoskeletal network is observed and western blots confirm a difference in the amount of tubulin present in the olk1 mutant versus the wt. The elaboration of neuronal axons and dendrites is dependent on a functional cytoskeleton. Observation of transport processes in primary neural cultures derived from olk1 mutant flies also showed a reduction of mitochondrial transport. Interaction with the fragile X mental retardation gene (dfmr1) was observed with the olk mutant. A dfmr1/ olk1 double mutant shows an ameliorated phenotype compared to the olk1 single mutant. tau, another MAP gene, was also shown to be able to partially rescue the olk1 mutant.}, subject = {Taufliege}, language = {en} }