@article{LamatschTrifonovSchoriesetal.2011, author = {Lamatsch, D. K. and Trifonov, V. and Schories, S. and Epplen, J. T. and Schmid, M. and Schartl, M.}, title = {Isolation of a Cancer-Associated Microchromosome in the Sperm-Dependent Parthenogen Poecilia formosa}, series = {Cytogenetic and Genome Research}, volume = {135}, journal = {Cytogenetic and Genome Research}, number = {2}, issn = {1424-8581}, doi = {10.1159/000331271}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-196785}, pages = {135-142}, year = {2011}, abstract = {In the asexual all-female fish species Poecilia formosa, the Amazon molly, supernumerary chromosomes have frequently been found in both laboratory-reared and wild-caught individuals. While wild-caught individuals with B chromosomes are phenotypically indifferent from conspecifics, individuals carrying B chromosomes from recent introgression events in the laboratory show phenotypic changes. Former analyses showed that the expression of a pigment cell locus is associated with the presence of these B chromosomes. In addition, they contain a so far unidentified locus that confers a higher susceptibility to tumor formation in the presence of pigmentation pattern. Isolation by microdissection and hybridization to metaphase chromosomes revealed that they contain one or several sequences with similarity to a highly repetitive pericentromeric and subtelomeric sequence in A chromosomes. Isolation of one particular sequence by AFLP showed that the B chromosomes contain at least 1 copy of an A-chromosomal region which is highly conserved in the whole genus Poecilia, i.e. more than 5 million years old. We propose it to be a single copy sequence.}, language = {en} } @article{StiebKelberWehneretal.2011, author = {Stieb, Sara Mae and Kelber, Christina and Wehner, R{\"u}diger and R{\"o}ssler, Wolfgang}, title = {Antennal-Lobe Organization in Desert Ants of the Genus Cataglyphis}, series = {Brain, Behavior and Evolution}, volume = {77}, journal = {Brain, Behavior and Evolution}, number = {3}, issn = {0006-8977}, doi = {10.1159/000326211}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-196815}, pages = {136-146}, year = {2011}, abstract = {Desert ants of the genus Cataglyphis possess remarkable visual navigation capabilities. Although Cataglyphis species lack a trail pheromone system, Cataglyphis fortis employs olfactory cues for detecting nest and food sites. To investigate potential adaptations in primary olfactory centers of the brain of C. fortis, we analyzed olfactory glomeruli (odor processing units) in their antennal lobes and compared them to glomeruli in different Cataglyphis species. Using confocal imaging and 3D reconstruction, we analyzed the number, size and spatial arrangement of olfactory glomeruli in C. fortis, C.albicans, C.bicolor, C.rubra, and C.noda. Workers of all Cataglyphis species have smaller numbers of glomeruli (198-249) compared to those previously found in olfactory-guided ants. Analyses in 2 species of Formica - a genus closely related to Cataglyphis - revealed substantially higher numbers of olfactory glomeruli (c. 370), which is likely to reflect the importance of olfaction in these wood ant species. Comparisons between Cataglyphis species revealed 2 special features in C. fortis. First, with c. 198 C. fortis has the lowest number of glomeruli compared to all other species. Second, a conspicuously enlarged glomerulus is located close to the antennal nerve entrance. Males of C. fortis possess a significantly smaller number of glomeruli (c. 150) compared to female workers and queens. A prominent male-specific macroglomerulus likely to be involved in sex pheromone communication occupies a position different from that of the enlarged glomerulus in females. The behavioral significance of the enlarged glomerulus in female workers remains elusive. The fact that C. fortis inhabits microhabitats (salt pans) that are avoided by all other Cataglyphis species suggests that extreme ecological conditions may not only have resulted in adaptations of visual capabilities, but also in specializations of the olfactory system.}, language = {en} } @article{SeherNickelMuelleretal.2011, author = {Seher, Axel and Nickel, Joachim and Mueller, Thomas D. and Kneitz, Susanne and Gebhardt, Susanne and Meyer ter Vehn, Tobias and Schlunck, Guenther and Sebald, Walter}, title = {Gene expression profiling of connective tissue growth factor (CTGF) stimulated primary human tenon fibroblasts reveals an inflammatory and wound healing response in vitro}, series = {Molecular Vision}, volume = {17}, journal = {Molecular Vision}, number = {08. Okt}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-140189}, pages = {53-62}, year = {2011}, abstract = {Purpose: The biologic relevance of human connective tissue growth factor (hCTGF) for primary human tenon fibroblasts (HTFs) was investigated by RNA expression profiling using affymetrix (TM) oligonucleotide array technology to identify genes that are regulated by hCTGF. Methods: Recombinant hCTGF was expressed in HEK293T cells and purified by affinity and gel chromatography. Specificity and biologic activity of hCTGF was confirmed by biosensor interaction analysis and proliferation assays. For RNA expression profiling HTFs were stimulated with hCTGF for 48h and analyzed using affymetrix (TM) oligonucleotide array technology. Results were validated by real time RT-PCR. Results: hCTGF induces various groups of genes responsible for a wound healing and inflammatory response in HTFs. A new subset of CTGF inducible inflammatory genes was discovered (e.g., chemokine [C-X-C motif] ligand 1 [CXCL1], chemokine [C-X-C motif] ligand 6 [CXCL6], interleukin 6 [IL6], and interleukin 8 [IL8]). We also identified genes that can transmit the known biologic functions initiated by CTGF such as proliferation and extracellular matrix remodelling. Of special interest is a group of genes, e.g., osteoglycin (OGN) and osteomodulin (OMD), which are known to play a key role in osteoblast biology. Conclusions: This study specifies the important role of hCTGF for primary tenon fibroblast function. The RNA expression profile yields new insights into the relevance of hCTGF in influencing biologic processes like wound healing, inflammation, proliferation, and extracellular matrix remodelling in vitro via transcriptional regulation of specific genes. The results suggest that CTGF potentially acts as a modulating factor in inflammatory and wound healing response in fibroblasts of the human eye.}, language = {en} } @article{SchleuningFarwigPetersetal.2011, author = {Schleuning, Matthias and Farwig, Nina and Peters, Marcell K. and Bergsdorf, Thomas and Bleher, B{\"a}rbel and Brandl, Roland and Dalitz, Helmut and Fischer, Georg and Freund, Wolfram and Gikungu, Mary W. and Hagen, Melanie and Garcia, Francisco Hita and Kagezi, Godfrey H. and Kaib, Manfred and Kraemer, Manfred and Lung, Tobias and Naumann, Clas M. and Schaab, Gertrud and Templin, Mathias and Uster, Dana and W{\"a}gele, J. Wolfgang and B{\"o}hning-Gaese, Katrin}, title = {Forest Fragmentation and Selective Logging Have Inconsistent Effects on Multiple Animal-Mediated Ecosystem Processes in a Tropical Forest}, series = {PLoS ONE}, volume = {6}, journal = {PLoS ONE}, number = {11}, doi = {10.1371/journal.pone.0027785}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-140093}, pages = {e27785}, year = {2011}, abstract = {Forest fragmentation and selective logging are two main drivers of global environmental change and modify biodiversity and environmental conditions in many tropical forests. The consequences of these changes for the functioning of tropical forest ecosystems have rarely been explored in a comprehensive approach. In a Kenyan rainforest, we studied six animal-mediated ecosystem processes and recorded species richness and community composition of all animal taxa involved in these processes. We used linear models and a formal meta-analysis to test whether forest fragmentation and selective logging affected ecosystem processes and biodiversity and used structural equation models to disentangle direct from biodiversity-related indirect effects of human disturbance on multiple ecosystem processes. Fragmentation increased decomposition and reduced antbird predation, while selective logging consistently increased pollination, seed dispersal and army-ant raiding. Fragmentation modified species richness or community composition of five taxa, whereas selective logging did not affect any component of biodiversity. Changes in the abundance of functionally important species were related to lower predation by antbirds and higher decomposition rates in small forest fragments. The positive effects of selective logging on bee pollination, bird seed dispersal and army-ant raiding were direct, i.e. not related to changes in biodiversity, and were probably due to behavioural changes of these highly mobile animal taxa. We conclude that animal-mediated ecosystem processes respond in distinct ways to different types of human disturbance in Kakamega Forest. Our findings suggest that forest fragmentation affects ecosystem processes indirectly by changes in biodiversity, whereas selective logging influences processes directly by modifying local environmental conditions and resource distributions. The positive to neutral effects of selective logging on ecosystem processes show that the functionality of tropical forests can be maintained in moderately disturbed forest fragments. Conservation concepts for tropical forests should thus include not only remaining pristine forests but also functionally viable forest remnants.}, language = {en} } @article{WagnerFischerThomaetal.2011, author = {Wagner, Toni U. and Fischer, Andreas and Thoma, Eva C. and Schartl, Manfred}, title = {CrossQuery: A Web Tool for Easy Associative Querying of Transcriptome Data}, series = {PLoS ONE}, volume = {6}, journal = {PLoS ONE}, number = {12}, doi = {10.1371/journal.pone.0028990}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-134787}, pages = {e28990}, year = {2011}, abstract = {Enormous amounts of data are being generated by modern methods such as transcriptome or exome sequencing and microarray profiling. Primary analyses such as quality control, normalization, statistics and mapping are highly complex and need to be performed by specialists. Thereafter, results are handed back to biomedical researchers, who are then confronted with complicated data lists. For rather simple tasks like data filtering, sorting and cross-association there is a need for new tools which can be used by non-specialists. Here, we describe CrossQuery, a web tool that enables straight forward, simple syntax queries to be executed on transcriptome sequencing and microarray datasets. We provide deep-sequencing data sets of stem cell lines derived from the model fish Medaka and microarray data of human endothelial cells. In the example datasets provided, mRNA expression levels, gene, transcript and sample identification numbers, GO-terms and gene descriptions can be freely correlated, filtered and sorted. Queries can be saved for later reuse and results can be exported to standard formats that allow copy-and-paste to all widespread data visualization tools such as Microsoft Excel. CrossQuery enables researchers to quickly and freely work with transcriptome and microarray data sets requiring only minimal computer skills. Furthermore, CrossQuery allows growing association of multiple datasets as long as at least one common point of correlated information, such as transcript identification numbers or GO-terms, is shared between samples. For advanced users, the object-oriented plug-in and event-driven code design of both server-side and client-side scripts allow easy addition of new features, data sources and data types.}, language = {en} } @article{CeteciXuCetecietal.2011, author = {Ceteci, Fatih and Xu, Jiajia and Ceteci, Semra and Zanucco, Emanuele and Thakur, Chitra and Rapp, Ulf R.}, title = {Conditional Expression of Oncogenic C-RAF in Mouse Pulmonary Epithelial Cells Reveals Differential Tumorigenesis and Induction of Autophagy Leading to Tumor Regression}, series = {Neoplasia}, volume = {13}, journal = {Neoplasia}, number = {11}, doi = {10.1593/neo.11652}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-134347}, pages = {1005-1018}, year = {2011}, abstract = {Here we describe a novel conditional mouse lung tumor model for investigation of the pathogenesis of human lung cancer. On the basis of the frequent involvement of the Ras-RAF-MEK-ERK signaling pathway in human non-small cell lung carcinoma (NSCLC), we have explored the target cell availability, reversibility, and cell type specificity of transformation by oncogenic C-RAF. Targeting expression to alveolar type II cells or to Clara cells, the two likely precursors of human NSCLC, revealed differential tumorigenicity between these cells. Whereas expression of oncogenic C-RAF in alveolar type II cells readily induced multifocal macroscopic lung tumors independent of the developmental state, few tumors with type II pneumocytes features and incomplete penetrance were found when targeted to Clara cells. Induced tumors did not progress and were strictly dependent on the initiating oncogene. Deinduction of mice resulted in tumor regression due to autophagy rather than apoptosis. Induction of autophagic cell death in regressing lung tumors suggests the use of autophagy enhancers as a treatment choice for patients with NSCLC.}, language = {en} } @article{PillaiHeidemannKumaretal.2011, author = {Pillai, Deepu R. and Heidemann, Robin M. and Kumar, Praveen and Shanbhag, Nagesh and Lanz, Titus and Dittmar, Michael S. and Sandner, Beatrice and Beier, Christoph P. and Weidner, Norbert and Greenlee, Mark W. and Schuierer, Gerhard and Bogdahn, Ulrich and Schlachetzki, Felix}, title = {Comprehensive Small Animal Imaging Strategies on a Clinical 3 T Dedicated Head MR-Scanner; Adapted Methods and Sequence Protocols in CNS Pathologies}, series = {PLoS ONE}, volume = {6}, journal = {PLoS ONE}, number = {2}, doi = {10.1371/journal.pone.0016091}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-134193}, pages = {e16091}, year = {2011}, abstract = {Background: Small animal models of human diseases are an indispensable aspect of pre-clinical research. Being dynamic, most pathologies demand extensive longitudinal monitoring to understand disease mechanisms, drug efficacy and side effects. These considerations often demand the concomitant development of monitoring systems with sufficient temporal and spatial resolution. Methodology and Results: This study attempts to configure and optimize a clinical 3 Tesla magnetic resonance scanner to facilitate imaging of small animal central nervous system pathologies. The hardware of the scanner was complemented by a custom-built, 4-channel phased array coil system. Extensive modification of standard sequence protocols was carried out based on tissue relaxometric calculations. Proton density differences between the gray and white matter of the rodent spinal cord along with transverse relaxation due to magnetic susceptibility differences at the cortex and striatum of both rats and mice demonstrated statistically significant differences. The employed parallel imaging reconstruction algorithms had distinct properties dependent on the sequence type and in the presence of the contrast agent. The attempt to morphologically phenotype a normal healthy rat brain in multiple planes delineated a number of anatomical regions, and all the clinically relevant sequels following acute cerebral ischemia could be adequately characterized. Changes in blood-brain-barrier permeability following ischemia-reperfusion were also apparent at a later time. Typical characteristics of intracerebral haemorrhage at acute and chronic stages were also visualized up to one month. Two models of rodent spinal cord injury were adequately characterized and closely mimicked the results of histological studies. In the employed rodent animal handling system a mouse model of glioblastoma was also studied with unequivocal results. Conclusions: The implemented customizations including extensive sequence protocol modifications resulted in images of high diagnostic quality. These results prove that lack of dedicated animal scanners shouldn't discourage conventional small animal imaging studies.}, language = {en} } @article{EndesfelderMalkuschFlottmannetal.2011, author = {Endesfelder, Ulrike and Malkusch, Sebastian and Flottmann, Benjamin and Mondry, Justine and Liguzinski, Piotr and Verveer, Peter J. and Heilemann, Mike}, title = {Chemically Induced Photoswitching of Fluorescent Probes - A General Concept for Super-Resolution Microscopy}, series = {Molecules}, volume = {16}, journal = {Molecules}, number = {4}, doi = {10.3390/molecules16043106}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-134080}, pages = {3106-3118}, year = {2011}, abstract = {We review fluorescent probes that can be photoswitched or photoactivated and are suited for single-molecule localization based super-resolution microscopy. We exploit the underlying photochemical mechanisms that allow photoswitching of many synthetic organic fluorophores in the presence of reducing agents, and study the impact of these on the photoswitching properties of various photoactivatable or photoconvertible fluorescent proteins. We have identified mEos2 as a fluorescent protein that exhibits reversible photoswitching under various imaging buffer conditions and present strategies to characterize reversible photoswitching. Finally, we discuss opportunities to combine fluorescent proteins with organic fluorophores for dual-color photoswitching microscopy.}, language = {en} } @article{OndruschKreft2011, author = {Ondrusch, Nicolai and Kreft, J{\"u}rgen}, title = {Blue and Red Light Modulates SigB-Dependent Gene Transcription, Swimming Motility and Invasiveness in \(Listeria\) \(monocytogenes\)}, series = {PLoS ONE}, volume = {6}, journal = {PLoS ONE}, number = {1}, doi = {10.1371/journal.pone.0016151}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-134050}, pages = {e16151}, year = {2011}, abstract = {Background: In a number of gram-positive bacteria, including Listeria, the general stress response is regulated by the alternative sigma factor B (SigB). Common stressors which lead to the activation of SigB and the SigB-dependent regulon are high osmolarity, acid and several more. Recently is has been shown that also blue and red light activates SigB in Bacillus subtilis. Methodology/Principal Findings: By qRT-PCR we analyzed the transcriptional response of the pathogen L. monocytogenes to blue and red light in wild type bacteria and in isogenic deletion mutants for the putative blue-light receptor Lmo0799 and the stress sigma factor SigB. It was found that both blue (455 nm) and red (625 nm) light induced the transcription of sigB and SigB-dependent genes, this induction was completely abolished in the SigB mutant. The blue-light effect was largely dependent on Lmo0799, proving that this protein is a genuine blue-light receptor. The deletion of lmo0799 enhanced the red-light effect, the underlying mechanism as well as that of SigB activation by red light remains unknown. Blue light led to an increased transcription of the internalin A/B genes and of bacterial invasiveness for Caco-2 enterocytes. Exposure to blue light also strongly inhibited swimming motility of the bacteria in a Lmo0799- and SigB-dependent manner, red light had no effect there. Conclusions/Significance: Our data established that visible, in particular blue light is an important environmental signal with an impact on gene expression and physiology of the non-phototrophic bacterium L. monocytogenes. In natural environments these effects will result in sometimes random but potentially also cyclic fluctuations of gene activity, depending on the light conditions prevailing in the respective habitat.}, language = {en} } @article{SchmittKellerNourkamiTutdibietal.2011, author = {Schmitt, Jana and Keller, Andreas and Nourkami-Tutdibi, Nasenien and Heisel, Sabrina and Habel, Nunja and Leidinger, Petra and Ludwig, Nicole and Gessler, Manfred and Graf, Norbert and Berthold, Frank and Lenhof, Hans-Peter and Meese, Eckart}, title = {Autoantibody Signature Differentiates Wilms Tumor Patients from Neuroblastoma Patients}, series = {PLoS ONE}, volume = {6}, journal = {PLoS ONE}, number = {12}, doi = {10.1371/journal.pone.0028951}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-133794}, pages = {e28951}, year = {2011}, abstract = {Several studies report autoantibody signatures in cancer. The majority of these studies analyzed adult tumors and compared the seroreactivity pattern of tumor patients with the pattern in healthy controls. Here, we compared the autoimmune response in patients with neuroblastoma and patients with Wilms tumor representing two different childhood tumors. We were able to differentiate untreated neuroblastoma patients from untreated Wilms tumor patients with an accuracy of 86.8\%, a sensitivity of 87.0\% and a specificity of 86.7\%. The separation of treated neuroblastoma patients from treated Wilms tumor patients' yielded comparable results with an accuracy of 83.8\%. We furthermore identified the antigens that contribute most to the differentiation between both tumor types. The analysis of these antigens revealed that neuroblastoma was considerably more immunogenic than Wilms tumor. The reported antigens have not been found to be relevant for comparative analyses between other tumors and controls. In summary, neuroblastoma appears as a highly immunogenic tumor as demonstrated by the extended number of antigens that separate this tumor from Wilms tumor.}, language = {en} }