@article{VolceanovHerbstBiniosseketal.2014, author = {Volceanov, Larisa and Herbst, Katharina and Biniossek, Martin and Schilling, Oliver and Haller, Dirk and N{\"o}lke, Thilo and Subbarayal, Prema and Rudel, Thomas and Zieger, Barbara and H{\"a}cker, Georg}, title = {Septins Arrange F-Actin-Containing Fibers on the Chlamydia trachomatis Inclusion and Are Required for Normal Release of the Inclusion by Extrusion}, series = {MBIO}, volume = {5}, journal = {MBIO}, number = {5}, issn = {2150-7511}, doi = {10.1128/mBio.01802-14}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-115421}, pages = {e01802-14}, year = {2014}, abstract = {Chlamydia trachomatis is an obligate intracellular human pathogen that grows inside a membranous, cytosolic vacuole termed an inclusion. Septins are a group of 13 GTP-binding proteins that assemble into oligomeric complexes and that can form higher-order filaments. We report here that the septins SEPT2, -9, -11, and probably -7 form fibrillar structures around the chlamydial inclusion. Colocalization studies suggest that these septins combine with F actin into fibers that encase the inclusion. Targeting the expression of individual septins by RNA interference (RNAi) prevented the formation of septin fibers as well as the recruitment of actin to the inclusion. At the end of the developmental cycle of C. trachomatis, newly formed, infectious elementary bodies are released, and this release occurs at least in part through the organized extrusion of intact inclusions. RNAi against SEPT9 or against the combination of SEPT2/7/9 substantially reduced the number of extrusions from a culture of infected HeLa cells. The data suggest that a higher-order structure of four septins is involved in the recruitment or stabilization of the actin coat around the chlamydial inclusion and that this actin recruitment by septins is instrumental for the coordinated egress of C. trachomatis from human cells. The organization of F actin around parasite-containing vacuoles may be a broader response mechanism of mammalian cells to the infection by intracellular, vacuole-dwelling pathogens. IMPORTANCE Chlamydia trachomatis is a frequent bacterial pathogen throughout the world, causing mostly eye and genital infections. C. trachomatis can develop only inside host cells; it multiplies inside a membranous vacuole in the cytosol, termed an inclusion. The inclusion is covered by cytoskeletal "coats" or "cages," whose organization and function are poorly understood. We here report that a relatively little-characterized group of proteins, septins, is required to organize actin fibers on the inclusion and probably through actin the release of the inclusion. Septins are a group of GTP-binding proteins that can organize into heteromeric complexes and then into large filaments. Septins have previously been found to be involved in the interaction of the cell with bacteria in the cytosol. Our observation that they also organize a reaction to bacteria living in vacuoles suggests that they have a function in the recognition of foreign compartments by a parasitized human cell.}, language = {en} } @article{AkhoonSinghVarshneyetal.2014, author = {Akhoon, Bashir A. and Singh, Krishna P. and Varshney, Megha and Gupta, Shishir K. and Shukla, Yogeshwar and Gupta, Shailendra K.}, title = {Understanding the Mechanism of Atovaquone Drug Resistance in Plasmodium falciparum Cytochrome b Mutation Y268S Using Computational Methods}, series = {PLOS ONE}, volume = {9}, journal = {PLOS ONE}, number = {10}, doi = {10.1371/journal.pone.0110041}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-114882}, pages = {e110041}, year = {2014}, abstract = {The rapid appearance of resistant malarial parasites after introduction of atovaquone (ATQ) drug has prompted the search for new drugs as even single point mutations in the active site of Cytochrome b protein can rapidly render ATQ ineffective. The presence of Y268 mutations in the Cytochrome b (Cyt b) protein is previously suggested to be responsible for the ATQ resistance in Plasmodium falciparum (P. falciparum). In this study, we examined the resistance mechanism against ATQ in P. falciparum through computational methods. Here, we reported a reliable protein model of Cyt bc1 complex containing Cyt b and the Iron-Sulphur Protein (ISP) of P. falciparum using composite modeling method by combining threading, ab initio modeling and atomic-level structure refinement approaches. The molecular dynamics simulations suggest that Y268S mutation causes ATQ resistance by reducing hydrophobic interactions between Cyt bc1 protein complex and ATQ. Moreover, the important histidine contact of ATQ with the ISP chain is also lost due to Y268S mutation. We noticed the induced mutation alters the arrangement of active site residues in a fashion that enforces ATQ to find its new stable binding site far away from the wild-type binding pocket. The MM-PBSA calculations also shows that the binding affinity of ATQ with Cyt bc1 complex is enough to hold it at this new site that ultimately leads to the ATQ resistance.}, language = {en} }