@article{ZoltnerKrienitzFieldetal.2018, author = {Zoltner, Martin and Krienitz, Nina and Field, Mark C. and Kramer, Susanne}, title = {Comparative proteomics of the two T. brucei PABPs suggests that PABP2 controls bulk mRNA}, series = {PLoS Neglected Tropical Diseases}, volume = {12}, journal = {PLoS Neglected Tropical Diseases}, number = {7}, doi = {10.1371/journal.pntd.0006679}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-177126}, pages = {e0006679}, year = {2018}, abstract = {Poly(A)-binding proteins (PABPs) regulate mRNA fate by controlling stability and translation through interactions with both the poly(A) tail and eIF4F complex. Many organisms have several paralogs of PABPs and eIF4F complex components and it is likely that different eIF4F/PABP complex combinations regulate distinct sets of mRNAs. Trypanosomes have five eIF4G paralogs, six of eIF4E and two PABPs, PABP1 and PABP2. Under starvation, polysomes dissociate and the majority of mRNAs, most translation initiation factors and PABP2 reversibly localise to starvation stress granules. To understand this more broadly we identified a protein interaction cohort for both T. brucei PABPs by cryo-mill/affinity purification-mass spectrometry. PABP1 very specifically interacts with the previously identified interactors eIF4E4 and eIF4G3 and few others. In contrast PABP2 is promiscuous, with a larger set of interactors including most translation initiation factors and most prominently eIF4G1, with its two partners TbG1-IP and TbG1-IP2. Only RBP23 was specific to PABP1, whilst 14 RNA-binding proteins were exclusively immunoprecipitated with PABP2. Significantly, PABP1 and associated proteins are largely excluded from starvation stress granules, but PABP2 and most interactors translocate to granules on starvation. We suggest that PABP1 regulates a small subpopulation of mainly small-sized mRNAs, as it interacts with a small and distinct set of proteins unable to enter the dominant pathway into starvation stress granules and localises preferentially to a subfraction of small polysomes. By contrast PABP2 likely regulates bulk mRNA translation, as it interacts with a wide range of proteins, enters stress granules and distributes over the full range of polysomes.}, language = {en} } @article{ZielewskaBuettnerHeurichMuelleretal.2018, author = {Zielewska-B{\"u}ttner, Katarzyna and Heurich, Marco and M{\"u}ller, J{\"o}rg and Braunisch, Veronika}, title = {Remotely Sensed Single Tree Data Enable the Determination of Habitat Thresholds for the Three-Toed Woodpecker (Picoides tridactylus)}, series = {Remote Sensing}, volume = {10}, journal = {Remote Sensing}, number = {12}, issn = {2072-4292}, doi = {10.3390/rs10121972}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-197565}, year = {2018}, abstract = {Forest biodiversity conservation requires precise, area-wide information on the abundance and distribution of key habitat structures at multiple spatial scales. We combined airborne laser scanning (ALS) data with color-infrared (CIR) aerial imagery for identifying individual tree characteristics and quantifying multi-scale habitat requirements using the example of the three-toed woodpecker (Picoides tridactylus) (TTW) in the Bavarian Forest National Park (Germany). This bird, a keystone species of boreal and mountainous forests, is highly reliant on bark beetles dwelling in dead or dying trees. While previous studies showed a positive relationship between the TTW presence and the amount of deadwood as a limiting resource, we hypothesized a unimodal response with a negative effect of very high deadwood amounts and tested for effects of substrate quality. Based on 104 woodpecker presence or absence locations, habitat selection was modelled at four spatial scales reflecting different woodpecker home range sizes. The abundance of standing dead trees was the most important predictor, with an increase in the probability of TTW occurrence up to a threshold of 44-50 dead trees per hectare, followed by a decrease in the probability of occurrence. A positive relationship with the deadwood crown size indicated the importance of fresh deadwood. Remote sensing data allowed both an area-wide prediction of species occurrence and the derivation of ecological threshold values for deadwood quality and quantity for more informed conservation management.}, language = {en} } @article{YankuBitmanLotanZoharetal.2018, author = {Yanku, Yifat and Bitman-Lotan, Eliya and Zohar, Yaniv and Kurant, Estee and Zilke, Norman and Eilers, Martin and Orian, Amir}, title = {Drosophila HUWE1 ubiquitin ligase regulates endoreplication and antagonizes JNK signaling during salivary gland development}, series = {Cells}, volume = {7}, journal = {Cells}, number = {10}, issn = {2073-4409}, doi = {10.3390/cells7100151}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-197630}, pages = {151}, year = {2018}, abstract = {The HECT-type ubiquitin ligase HECT, UBA and WWE Domain Containing 1, (HUWE1) regulates key cancer-related pathways, including the Myc oncogene. It affects cell proliferation, stress and immune signaling, mitochondria homeostasis, and cell death. HUWE1 is evolutionarily conserved from Caenorhabditis elegance to Drosophila melanogaster and Humans. Here, we report that the Drosophila ortholog, dHUWE1 (CG8184), is an essential gene whose loss results in embryonic lethality and whose tissue-specific disruption establishes its regulatory role in larval salivary gland development. dHUWE1 is essential for endoreplication of salivary gland cells and its knockdown results in the inability of these cells to replicate DNA. Remarkably, dHUWE1 is a survival factor that prevents premature activation of JNK signaling, thus preventing the disintegration of the salivary gland, which occurs physiologically during pupal stages. This function of dHUWE1 is general, as its inhibitory effect is observed also during eye development and at the organismal level. Epistatic studies revealed that the loss of dHUWE1 is compensated by dMyc proeitn expression or the loss of dmP53. dHUWE1 is therefore a conserved survival factor that regulates organ formation during Drosophila development.}, language = {en} } @article{WegertVokuhlCollordetal.2018, author = {Wegert, Jenny and Vokuhl, Christian and Collord, Grace and Del Castillo Velasco-Herrera, Martin and Farndon, Sarah J. and Guzzo, Charlotte and Jorgensen, Mette and Anderson, John and Slater, Olga and Duncan, Catriona and Bausenwein, Sabrina and Streitenberger, Heike and Ziegler, Barbara and Furtw{\"a}ngler, Rhoikos and Graf, Norbert and Stratton, Michael R. and Campbell, Peter J. and Jones, David TW and Koelsche, Christian and Pfister, Stefan M. and Mifsud, William and Sebire, Neil and Sparber-Sauer, Monika and Koscielniak, Ewa and Rosenwald, Andreas and Gessler, Manfred and Behjati, Sam}, title = {Recurrent intragenic rearrangements of EGFR and BRAF in soft tissue tumors of infants}, series = {Nature Communications}, volume = {9}, journal = {Nature Communications}, doi = {10.1038/s41467-018-04650-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-233446}, year = {2018}, abstract = {Soft tissue tumors of infancy encompass an overlapping spectrum of diseases that pose unique diagnostic and clinical challenges. We studied genomes and transcriptomes of cryptogenic congenital mesoblastic nephroma (CMN), and extended our findings to five anatomically or histologically related soft tissue tumors: infantile fibrosarcoma (IFS), nephroblastomatosis, Wilms tumor, malignant rhabdoid tumor, and clear cell sarcoma of the kidney. A key finding is recurrent mutation of EGFR in CMN by internal tandem duplication of the kinase domain, thus delineating CMN from other childhood renal tumors. Furthermore, we identify BRAF intragenic rearrangements in CMN and IFS. Collectively these findings reveal novel diagnostic markers and therapeutic strategies and highlight a prominent role of isolated intragenic rearrangements as drivers of infant tumors.}, language = {en} } @article{VujanićGesslerOomsetal.2018, author = {Vujanić, Gordan M. and Gessler, Manfred and Ooms, Ariadne H. A. G. and Collini, Paola and Coulomb-l'Hermine, Aurore and D'Hooghe, Ellen and de Krijger, Ronald R. and Perotti, Daniela and Pritchard-Jones, Kathy and Vokuhl, Christian and van den Heuvel-Eibrink, Marry M. and Graf, Norbert}, title = {The UMBRELLA SIOP-RTSG 2016 Wilms tumour pathology and molecular biology protocol}, series = {Nature Reviews Urology}, volume = {15}, journal = {Nature Reviews Urology}, organization = {International Society of Paediatric Oncology-Renal Tumour Study Group (SIOP-RTSG)}, doi = {10.1038/s41585-018-0100-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-233265}, pages = {693-701}, year = {2018}, abstract = {On the basis of the results of previous national and international trials and studies, the Renal Tumour Study Group of the International Society of Paediatric Oncology (SIOP-RTSG) has developed a new study protocol for paediatric renal tumours: the UMBRELLA SIOP-RTSG 2016 protocol (the UMBRELLA protocol). Currently, the overall outcomes of patients with Wilms tumour are excellent, but subgroups with poor prognosis and increased relapse rates still exist. The identification of these subgroups is of utmost importance to improve treatment stratification, which might lead to reduction of the direct and late effects of chemotherapy. The UMBRELLA protocol aims to validate new prognostic factors, such as blastemal tumour volume and molecular markers, to further improve outcome. To achieve this aim, large, international, high-quality databases are needed, which dictate optimization and international harmonization of specimen handling and comprehensive sampling of biological material, refine definitions and improve logistics for expert review. To promote broad implementation of the UMBRELLA protocol, the updated SIOP-RTSG pathology and molecular biology protocol for Wilms tumours has been outlined, which is a consensus from the SIOP-RTSG pathology panel.}, language = {en} } @article{vandePeppelAanenBiedermann2018, author = {van de Peppel, L. J. J. and Aanen, D. K. and Biedermann, P. H. W.}, title = {Low intraspecific genetic diversity indicates asexuality and vertical transmission in the fungal cultivars of ambrosia beetles}, series = {Fungal Ecology}, volume = {32}, journal = {Fungal Ecology}, doi = {10.1016/j.funeco.2017.11.010}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-232161}, pages = {57-64}, year = {2018}, abstract = {Ambrosia beetles farm ascomycetous fungi in tunnels within wood. These ambrosia fungi are regarded asexual, although population genetic proof is missing. Here we explored the intraspecific genetic diversity of Ambrosiella grosmanniae and Ambrosiella hartigii (Ascomycota: Microascales), the mutualists of the beetles Xylosandrus germanus and Anisandrus dispar. By sequencing five markers (ITS, LSU, TEF1α, RPB2, β-tubulin) from several fungal strains, we show that X. germanus cultivates the same two clones of A. grosmanniae in the USA and in Europe, whereas A. dispar is associated with a single A. hartigii clone across Europe. This low genetic diversity is consistent with predominantly asexual vertical transmission of Ambrosiella cultivars between beetle generations. This clonal agriculture is a remarkable case of convergence with fungus-farming ants, given that both groups have a completely different ecology and evolutionary history.}, language = {en} } @article{TooKellerSickeletal.2018, author = {Too, Chin Chin and Keller, Alexander and Sickel, Wiebke and Lee, Sui Mae and Yule, Catherine M.}, title = {Microbial Community Structure in a Malaysian Tropical Peat Swamp Forest: The Influence of Tree Species and Depth}, series = {Frontiers in Microbiology}, volume = {9}, journal = {Frontiers in Microbiology}, doi = {10.3389/fmicb.2018.02859}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-229000}, year = {2018}, abstract = {Tropical peat swamp forests sequester globally significant stores of carbon in deep layers of waterlogged, anoxic, acidic and nutrient-depleted peat. The roles of microbes in supporting these forests through the formation of peat, carbon sequestration and nutrient cycling are virtually unknown. This study investigated physicochemical peat properties and microbial diversity between three dominant tree species: Shorea uliginosa (Dipterocarpaceae), Koompassia malaccensis (legumes associated with nitrogen-fixing bacteria), Eleiodoxa conferta (palm) and depths (surface, 45 and 90 cm) using microbial 16S rRNA gene amplicon sequencing. Water pH, oxygen, nitrogen, phosphorus, total phenolic contents and C/N ratio differed significantly between depths, but not tree species. Depth also strongly influenced microbial diversity and composition, while both depth and tree species exhibited significant impact on the archaeal communities. Microbial diversity was highest at the surface, where fresh leaf litter accumulates, and nutrient supply is guaranteed. Nitrogen was the core parameter correlating to microbial communities, but the interactive effects from various environmental variables displayed significant correlation to relative abundance of major microbial groups. Proteobacteria was the dominant phylum and the most abundant genus, Rhodoplanes, might be involved in nitrogen fixation. The most abundant methanogens and methanotrophs affiliated, respectively, to families Methanomassiliicoccaceae and Methylocystaceae. Our results demonstrated diverse microbial communities and provide valuable insights on microbial ecology in these extreme ecosystems.}, language = {en} } @article{TauscherNakagawaVoelkeretal.2018, author = {Tauscher, Sabine and Nakagawa, Hitoshi and V{\"o}lker, Katharina and Werner, Franziska and Krebes, Lisa and Potapenko, Tamara and Doose, S{\"o}ren and Birkenfeld, Andreas L. and Baba, Hideo A. and Kuhn, Michaela}, title = {β Cell-specific deletion of guanylyl cyclase A, the receptor for atrial natriuretic peptide, accelerates obesity-induced glucose intolerance in mice}, series = {Cardiovascular Diabetology}, volume = {17}, journal = {Cardiovascular Diabetology}, number = {103}, doi = {10.1186/s12933-018-0747-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-176322}, year = {2018}, abstract = {Background: The cardiac hormones atrial (ANP) and B-type natriuretic peptides (BNP) moderate arterial blood pressure and improve energy metabolism as well as insulin sensitivity via their shared cGMP-producing guanylyl cyclase-A (GC-A) receptor. Obesity is associated with impaired NP/GC-A/cGMP signaling, which possibly contributes to the development of type 2 diabetes and its cardiometabolic complications. In vitro, synthetic ANP, via GC-A, stimulates glucose-dependent insulin release from cultured pancreatic islets and β-cell proliferation. However, the relevance for systemic glucose homeostasis in vivo is not known. To dissect whether the endogenous cardiac hormones modulate the secretory function and/or proliferation of β-cells under (patho)physiological conditions in vivo, here we generated a novel genetic mouse model with selective disruption of the GC-A receptor in β-cells. Methods: Mice with a floxed GC-A gene were bred to Rip-CreTG mice, thereby deleting GC-A selectively in β-cells (β GC-A KO). Weight gain, glucose tolerance, insulin sensitivity, and glucose-stimulated insulin secretion were monitored in normal diet (ND)- and high-fat diet (HFD)-fed mice. β-cell size and number were measured by immunofluorescence-based islet morphometry. Results: In vitro, the insulinotropic and proliferative actions of ANP were abolished in islets isolated from β GC-A KO mice. Concordantly, in vivo, infusion of BNP mildly enhanced baseline plasma insulin levels and glucose-induced insulin secretion in control mice. This effect of exogenous BNP was abolished in β GC-A KO mice, corroborating the efficient inactivation of the GC-A receptor in β-cells. Despite this under physiological, ND conditions, fasted and fed insulin levels, glucose-induced insulin secretion, glucose tolerance and β-cell morphology were similar in β GC-A KO mice and control littermates. However, HFD-fed β GC-A KO animals had accelerated glucose intolerance and diminished adaptative β-cell proliferation. Conclusions: Our studies of β GC-A KO mice demonstrate that the cardiac hormones ANP and BNP do not modulate β-cell's growth and secretory functions under physiological, normal dietary conditions. However, endogenous NP/GC-A signaling improves the initial adaptative response of β-cells to HFD-induced obesity. Impaired β-cell NP/GC-A signaling in obese individuals might contribute to the development of type 2 diabetes.}, language = {en} } @article{SteinStenchlyCoulibalyetal.2018, author = {Stein, Katharina and Stenchly, Kathrin and Coulibaly, Drissa and Pauly, Alain and Dimobe, Kangbeni and Steffan-Dewenter, Ingolf and Konat{\´e}, Souleymane and Goetze, Dethardt and Porembski, Stefan and Linsenmair, K. Eduard}, title = {Impact of human disturbance on bee pollinator communities in savanna and agricultural sites in Burkina Faso, West Africa}, series = {Ecology and Evolution}, volume = {8}, journal = {Ecology and Evolution}, doi = {10.1002/ece3.4197}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-239999}, pages = {6827-6838}, year = {2018}, abstract = {All over the world, pollinators are threatened by land-use change involving degradation of seminatural habitats or conversion into agricultural land. Such disturbance often leads to lowered pollinator abundance and/or diversity, which might reduce crop yield in adjacent agricultural areas. For West Africa, changes in bee communities across disturbance gradients from savanna to agricultural land are mainly unknown. In this study, we monitored for the impact of human disturbance on bee communities in savanna and crop fields. We chose three savanna areas of varying disturbance intensity (low, medium, and high) in the South Sudanian zone of Burkina Faso, based on land-use/land cover data via Landsat images, and selected nearby cotton and sesame fields. During 21 months covering two rainy and two dry seasons in 2014 and 2015, we captured bees using pan traps. Spatial and temporal patterns of bee species abundance, richness, evenness and community structure were assessed. In total, 35,469 bee specimens were caught on 12 savanna sites and 22 fields, comprising 97 species of 32 genera. Bee abundance was highest at intermediate disturbance in the rainy season. Species richness and evenness did not differ significantly. Bee communities at medium and highly disturbed savanna sites comprised only subsets of those at low disturbed sites. An across-habitat spillover of bees (mostly abundant social bee species) from savanna into crop fields was observed during the rainy season when crops are mass-flowering, whereas most savanna plants are not in bloom. Despite disturbance intensification, our findings suggest that wild bee communities can persist in anthropogenic landscapes and that some species even benefitted disproportionally. West African areas of crop production such as for cotton and sesame may serve as important food resources for bee species in times when resources in the savanna are scarce and receive at the same time considerable pollination service.}, language = {en} } @article{SommerfeldSenfBumaetal.2018, author = {Sommerfeld, Andreas and Senf, Cornelius and Buma, Brian and D'Amato, Anthony W. and Despr{\´e}s, Tiphaine and D{\´i}az-Hormaz{\´a}bal, Ignacio and Fraver, Shawn and Frelich, Lee E. and Guti{\´e}rrez, {\´A}lvaro G. and Hart, Sarah J. and Harvey, Brian J. and He, Hong S. and Hl{\´a}sny, Tom{\´a}š and Holz, Andr{\´e}s and Kitzberger, Thomas and Kulakowski, Dominik and Lindenmayer, David and Mori, Akira S. and M{\"u}ller, J{\"o}rg and Paritsis, Juan and Perry, George L. W. and Stephens, Scott L. and Svoboda, Miroslav and Turner, Monica G. and Veblen, Thomas T. and Seidl, Rupert}, title = {Patterns and drivers of recent disturbances across the temperate forest biome}, series = {Nature Communications}, volume = {9}, journal = {Nature Communications}, doi = {10.1038/s41467-018-06788-9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-239157}, year = {2018}, abstract = {Increasing evidence indicates that forest disturbances are changing in response to global change, yet local variability in disturbance remains high. We quantified this considerable variability and analyzed whether recent disturbance episodes around the globe were consistently driven by climate, and if human influence modulates patterns of forest disturbance. We combined remote sensing data on recent (2001-2014) disturbances with in-depth local information for 50 protected landscapes and their surroundings across the temperate biome. Disturbance patterns are highly variable, and shaped by variation in disturbance agents and traits of prevailing tree species. However, high disturbance activity is consistently linked to warmer and drier than average conditions across the globe. Disturbances in protected areas are smaller and more complex in shape compared to their surroundings affected by human land use. This signal disappears in areas with high recent natural disturbance activity, underlining the potential of climate-mediated disturbance to transform forest landscapes.}, language = {en} }