@phdthesis{Burgert2018, author = {Burgert, Anne}, title = {Untersuchung von Sphingolipiden und anderen Membrankonjugaten mittels hochaufl{\"o}sender Fluoreszenzmikroskopie}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-145725}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Methoden der Fluoreszenz-Lokalisationsmikroskopie (engl. single-molecule localization microscopy, SMLM) erm{\"o}glichen es Molek{\"u}le zu quantifizieren und deren Verteilung zu analysieren. Im Rahmen dieser Arbeit wurden verschiedene Membranmolek{\"u}le auf unterschiedlichen eukaryotischen Zellen, aber auch auf Prokaryoten mit dSTORM (engl. direct stochastic optical reconstruction microscopy) oder PALM (engl.: photoactivated localization microscopy) aufgenommen und quantifiziert. Bevor jedoch diese hochaufl{\"o}sende fluoreszenzbasierte Technik f{\"u}r biologische Fragestellungen angewendet werden konnten, mussten zun{\"a}chst potentielle Artefakt-ausl{\"o}sende Quellen identifiziert und Strategien gefunden werden, um diese zu eliminieren. Eine m{\"o}gliche Artefakt-Quelle ist eine zu niedrige Photonenzahl, die von Fluorophoren emittiert wird. Werden zu wenige Photonen detektiert, kann die Lokalisation eines Fluorophors weniger pr{\"a}zise bestimmt werden. Dies kann zu einer falschen Abbildung von Strukturen f{\"u}hren oder zu falschen R{\"u}ckschl{\"u}ssen {\"u}ber die Verteilung von Molek{\"u}len. Eine M{\"o}glichkeit die Anzahl der emittierten Photonen zu erh{\"o}hen, ist chemische Additive als Triplettl{\"o}scher einzusetzen. Sie bewirken, dass die Fluorophore wieder in den Grundzustand relaxieren und somit wieder angeregt werden k{\"o}nnen. Es wurden verschiedene Additive, die in der Literatur als Triplettl{\"o}scher beschrieben sind, getestet. Dazu wurden zun{\"a}chst ihre Auswirkungen auf den Triplettzustand verschiedener Fluorophore (Alexa Fluor (Al) 488, 532 und 647 und Atto655) mit Hilfe von Fluoreszenzkorrelationsspektroskopie (FCS) untersucht. Cyclooctatetraen (COT) bewirkte dabei eine Abnahme der Triplettausbeute von Al488, Al532 und Al647 um ~ 40-60\%, bei Atto655 ver{\"a}nderte sie sich nicht. Obwohl die Ergebnisse der FCS-Messungen darauf hindeuten, dass COT in einer erh{\"o}hten Anzahl an emittierten Photonen resultiert, konnte dies bei dSTORM-Messungen nicht best{\"a}tigt werden. Hier hatte COT nur einen gr{\"o}ßeren positiven Effekt auf das Fluorophor Al647 (Zunahme um ~ 60\%). Eine Erkl{\"a}rung f{\"u}r diese Widerspr{\"u}chlichkeit zu den Ergebnissen aus den FCS-Messungen, k{\"o}nnte das Vorhandensein des Schaltpuffers bei dSTORM-Messungen sein. Dieser bewirkt den {\"U}bergang der Fluorophore in den Aus-Zustand bzw. entzieht dem Puffer Sauerstoff. Bei der Zugabe von 5 mM Kaliumiodid (KI) nahm die Triplettamplitude bei FCS-Messungen nur bei Al488 ab (um ~ 80\%). Eine geringe Steigerung (um ~ 10\%) der Intensit{\"a}t von Al488 mit KI konnte bei dSTORM-Messungen mit niedrigen Konzentrationen (~ 0,5 mM) erzielt werden. Bei einer Konzentration von 5 mM sank die Intensit{\"a}t jedoch wieder um 40\%. Deuteriumoxid (D2O) soll, anders als die Triplettl{\"o}scher, eine Verbesserung der Photonenausbeute dadurch bewirken, dass strahlungslose Relaxationsprozesse minimiert werden. Mit dSTORM-Messungen konnte gezeigt werden, dass Atto655 und Al647 in D2O zwar pro An-Zustand mehr Photonen emittieren als in Schaltpuffer ohne D2O, da die Fluorophore hier jedoch schneller bleichen, letztendlich die gleiche Anzahl an Photonen detektiert werden. Um die Anzahl an emittierten Photonen zu erh{\"o}hen, eignet sich also nur COT bei dSTORM-Messungen mit AL647 und KI in sehr geringen Konzentrationen bei Al488. D2O kann eingesetzt werden, wenn eine Probe schnell vermessen werden muss, wie zum Beispiel bei Lebendzellmessungen. Nicht nur eine zu niedrige Photonenzahl, auch eine zu geringe Photoschaltrate kann Artefakte bei dSTORM-Messungen erzeugen. Dies wurde anhand von verschiedenen biologischen Strukturen, die mit unterschiedlichen Anregungsintensit{\"a}ten aufgenommen wurden, deutlich gemacht. Besonders die Aufnahmen von Plasmamembranen sind anf{\"a}llig f{\"u}r die Generierung von Artefakten. Sie weisen viele inhomogene und lokal dichte Regionen auf. Wenn nun mehr als ein Emitter pro µm² gleichzeitig an ist, erzeugt das Auswertungsprogramm große artifizielle Cluster. Die hier durchgef{\"u}hrten Messungen machen deutlich, wie wichtig es ist, dSTORM-Bilder immer auf m{\"o}gliche Artefakte hin zu untersuchen, besonders wenn Molek{\"u}le quantifiziert werden sollen. Daf{\"u}r m{\"u}ssen die unbearbeiteten Rohdaten sorgf{\"a}ltig gesichtet werden und notfalls die Messungen mit einer h{\"o}heren Laserleistung wiederholt werden. Da dSTORM mittlerweile immer mehr zur Quantifizierung eingesetzt wird und Clusteranalysen durchgef{\"u}hrt werden, w{\"a}re es sinnvoll bei Ver{\"o}ffentlichungen die Rohdaten von entscheidenden Aufnahmen der {\"O}ffentlichkeit zur Verf{\"u}gung zu stellen. Die F{\"a}rbemethode ist ein weiterer Punkt, durch den Artefakte bei der Abbildung von Molek{\"u}len mittels SMLM entstehen k{\"o}nnen. H{\"a}ufig werden Antik{\"o}rper zum Markieren verwendet. Dabei sollte darauf geachtet werden, dass m{\"o}glichst kleine Antik{\"o}rper oder Antik{\"o}rperfragmente verwendet werden, besonders wenn Clusteranalysen durchgef{\"u}hrt werden sollen. Anderenfalls leidet die Aufl{\"o}sung darunter, bzw. erh{\"o}ht sich die Gefahr der Kreuzvernetzung von Molek{\"u}len. Im zweiten Teil der vorliegenden Arbeit, wurden Plasmamembran-Ceramide untersucht. Ceramide geh{\"o}ren zu den Sphingolipiden und regulieren diverse zellul{\"a}re Prozesse. Verschiedene Stimuli bewirken eine Aktivierung von Sphingomyelinasen (SMasen), die Ceramide in der Plasmamembran synthetisieren. Steigt die Konzentration von Ceramiden in der Plasmamembran an, kondensieren diese zu Ceramid-reichen Plattformen (CRPs). Bisher ist noch wenig {\"u}ber die Verteilung der Ceramide und die Gr{\"o}ße der CRPs bekannt. Sie wurden hier {\"u}ber IgG-Antik{\"o}rper in der Plasmamembran von Jurkat-, U2OS-, HBME- und prim{\"a}ren T-Zellen angef{\"a}rbt und erstmals mit dSTORM hochaufgel{\"o}st, um sie dann zu quantifizieren. Unabh{\"a}ngig von der Zelllinie befanden sich 50\% aller Ceramidmolek{\"u}le in ~ 75 nm großen CRPs. Im Mittel bestanden die CRPs aus ~ 20 Ceramiden. Mit Hilfe einer Titrationsreihe konnte ausgeschlossen werden, dass diese Cluster nur durch die Antik{\"o}rper-F{\"a}rbung artifiziell erzeugt wurden. Bei Inkubation der Zellen mit Bacillus cereus Sphingomyelinase (bSMase) stieg die Gesamtkonzentration der Ceramide in der Plasmamembran an, ebenso wie die Ceramidanzahl innerhalb der CRPs, außerdem die Anzahl und Gr{\"o}ße der CRPs. Dies k{\"o}nnte zu einer Ver{\"a}nderung der L{\"o}slichkeit von Membrankomponenten f{\"u}hren, was wiederum eine Akkumulation bestimmter Rezeptoren oder eine Kompartimentierung bestimmter Proteine erleichtern k{\"o}nnte. Die Anh{\"a}ufung der Ceramide in den CRPs k{\"o}nnte ebenfalls die lokale Interaktion mit anderen Membranmolek{\"u}len erleichtern und dadurch m{\"o}glicherweise die Reaktivit{\"a}t von Rezeptoren ver{\"a}ndern. Mittels Azid-modifizierten Ceramidanaloga und kupferfreier Click-Chemie wurden Plasmamembran-Ceramide auch in lebenden Jurkat-Zellen mit Hilfe konfokaler Laser-Raster-Mikroskopie (CLSM, engl. confocal laser scanning microscopy) und Strukturierter Beleuchtungsmikroskopie (SIM, engl. structured illumination microscopy) untersucht. Dabei konnte gezeigt werden, dass die Fetts{\"a}ure-Kettenl{\"a}nge und die Position des Azids bei den Ceramidanaloga eine entscheidende Rolle spielt, wie hoch das detektierte Signal in der Plasmamembran letztendlich ist. Die Versuche machen auch deutlich, dass die klickbaren Ceramidanaloga lebendzellkompatibel sind, sodass sie eine hervorragende M{\"o}glichkeit darstellen, zellul{\"a}re Reaktionen zu verfolgen. Es wurden hier nicht nur Ceramide in eukaryotischen Zellen analysiert, sondern auch in Bakterien. Neisseria meningitidis (N. meningitidis) sind gramnegative Bakterien, die im Menschen eine Sepsis oder eine Meningitis ausl{\"o}sen k{\"o}nnen. Es wurde mittels immunhistochemischen F{\"a}rbungen mit dem anti-Ceramid IgG-Antik{\"o}rper, aber auch mit den klickbaren Ceramidanaloga, ein Signal in der Membran erhalten, was mit dSTORM hochaufgel{\"o}st wurde. In anderen Bakterien wurden ebenfalls schon Sphingolipide nachgewiesen. Studien zu Ceramiden in N. meningitidis wurden bisher jedoch noch nicht ver{\"o}ffentlicht. Im Rahmen dieser Arbeit konnten erstmals Ergebnisse erhalten werden, die darauf hinweisen, dass N. meningitidis ebenfalls Ceramide besitzen k{\"o}nnten. In einem dritten Projekt wurde die Interaktion zwischen NK-Zellen und Aspergillus fumigatus untersucht. Der Schimmelpilz kann eine Invasive Aspergillose in immunsupprimierten Menschen ausl{\"o}sen, was zum Tod f{\"u}hren kann. Verschiedene Studien konnten schon zeigen, dass NK-Zellen eine wichtige Rolle bei der Bek{\"a}mpfung des Pilzes spielen. Der genaue Mechanismus ist jedoch noch unbekannt. Im Rahmen dieser Arbeit konnte nachgewiesen werden, dass der NK-Zell-Marker CD56 entscheidend f{\"u}r die Pilzerkennung ist. Mit immunhistochemischen F{\"a}rbungen und LSM-, aber auch dSTORM-Messungen, konnte gezeigt werden, dass die normalerweise homogen verteilten CD56-Rezeptoren auf der Plasmamembran von NK-Zellen aktiv an die Interaktionsstelle zu A. fumigatus transportiert werden. Mit der Zeit akkumulieren hier immer mehr CD56-Proteine, w{\"a}hrend das Signal in der restlichen Membran immer weiter abnimmt. Es konnte erstmals CD56 als wichtiger Erkennungsrezeptor f{\"u}r A. fumigatus identifiziert werden. In dem letzten bearbeiteten Projekt, wurde die Bindung von Anti-N-Methyl-D-Aspartat (NMDA)-Rezeptor Enzephalitis Autoantik{\"o}rper an Neuronen untersucht. Bei einer Anti-NMDA-Rezeptor Enzephalitis bilden die Patienten Autoantik{\"o}rper gegen die NR1-Untereinheit ihrer eigenen postsynaptischen NMDA-Rezeptoren. Da die Krankheit oft sehr sp{\"a}t erkannt wird und die Behandlungsm{\"o}glichkeiten noch sehr eingeschr{\"a}nkt sind, f{\"u}hrt sie noch oft zum Tod. Sie wurde erst vor wenigen Jahren beschrieben, sodass der genaue Mechanismus noch unbekannt ist. Im Rahmen dieser Arbeit, konnten erste F{\"a}rbungen mit aufgereinigten Antik{\"o}rper aus Anti-NMDA-Rezeptor Enzephalitis Patienten an NMDA-Rezeptor-transfizierte HEK-Zellen und hippocampalen Maus-Neuronen durchgef{\"u}hrt und mit dSTORM hochaufgel{\"o}st werden. Mit den Messungen der HEK-Zellen konnte best{\"a}tigt werden, dass die Autoantik{\"o}rper an die NR1-Untereinheit der Rezeptoren binden. Es konnten erstmals auch die Bindung der Antik{\"o}rper an Neuronen hochaufgel{\"o}st werden. Dabei wurde sichtbar, dass die Antik{\"o}rper zum einen dicht gepackt in den Synapsen vorliegen, aber auch d{\"u}nner verteilt in den extrasynaptischen Regionen. Basierend auf der Ripley's H-Funktion konnten in den Synapsen große Cluster von ~ 90 nm Durchmesser und im Mittel ~ 500 Lokalisationen und extrasynaptisch kleinere Cluster mit einem durchschnittlichen Durchmesser von ~ 70 nm und ~ 100 Lokalisationen ausgemacht werden. Diese ersten Ergebnisse legen den Grundstein f{\"u}r weitere Messungen, mit denen der Mechanismus der Krankheit untersucht werden kann.}, subject = {Ceramide}, language = {de} } @phdthesis{Aufmkolk2018, author = {Aufmkolk, Sarah}, title = {Super-Resolution Microscopy of Synaptic Proteins}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-151976}, school = {Universit{\"a}t W{\"u}rzburg}, pages = {X, 97}, year = {2018}, abstract = {The interaction of synaptic proteins orchestrate the function of one of the most complex organs, the brain. The multitude of molecular elements influencing neurological correlations makes imaging processes complicated since conventional fluorescence microscopy methods are unable to resolve structures beyond the diffraction-limit. The implementation of super-resolution fluorescence microscopy into the field of neuroscience allows the visualisation of the fine details of neural connectivity. The key element of my thesis is the super-resolution technique dSTORM (direct Stochastic Optical Reconstruction Microscopy) and its optimisation as a multi-colour approach. Capturing more than one target, I aim to unravel the distribution of synaptic proteins with nanometer precision and set them into a structural and quantitative context with one another. Therefore dSTORM specific protocols are optimized to serve the peculiarities of particular neural samples. In one project the brain derived neurotrophic factor (BDNF) is investigated in primary, hippocampal neurons. With a precision beyond 15 nm, preand post-synaptic sites can be identified by staining the active zone proteins bassoon and homer. As a result, hallmarks of mature synapses can be exhibited. The single molecule sensitivity of dSTORM enables the measurement of endogenous BDNF and locates BDNF granules aligned with glutamatergic pre-synapses. This data proofs that hippocampal neurons are capable of enriching BDNF within the mature glutamatergic pre-synapse, possibly influencing synaptic plasticity. The distribution of the metabotropic glutamate receptor mGlu4 is investigated in physiological brain slices enabling the analysis of the receptor in its natural environment. With dual-colour dSTORM, the spatial arrangement of the mGlu4 receptor in the pre-synaptic sites of parallel fibres in the molecular layer of the mouse cerebellum is visualized, as well as a four to six-fold increase in the density of the receptor in the active zone compared to the nearby environment. Prior functional measurements show that metabotropic glutamate receptors influence voltage-gated calcium channels and proteins that are involved in synaptic vesicle priming. Corresponding dSTORM data indeed suggests that a subset of the mGlu4 receptor is correlated with the voltage-gated calcium channel Cav2.1 on distances around 60 nm. These results are based on the improvement of the direct analysis of localisation data. Tools like coordinated based correlation analysis and nearest neighbour analysis of clusters centroids are used complementary to map protein connections of the synapse. Limits and possible improvements of these tools are discussed to foster the quantitative analysis of single molecule localisation microscopy data. Performing super-resolution microscopy on complex samples like brain slices benefits from a maximised field of view in combination with the visualisation of more than two targets to set the protein of interest in a cellular context. This challenge served as a motivation to establish a workflow for correlated structured illumination microscopy (SIM) and dSTORM. The development of the visualisation software coSIdSTORM promotes the combination of these powerful super-resolution techniques even on separated setups. As an example, synapses in the cerebellum that are affiliated to the parallel fibres and the dendrites of the Purkinje cells are identified by SIM and the protein bassoon of those pre-synapses is visualised threedimensionally with nanoscopic precision by dSTORM. In this work I placed emphasis on the improvement of multi-colour super-resolution imaging and its analysing tools to enable the investigation of synaptic proteins. The unravelling of the structural arrangement of investigated proteins supports the building of a synapse model and therefore helps to understand the relation between structure and function in neural transmission processes.}, subject = {Hochaufl{\"o}sende Mikroskopie}, language = {en} }