@article{MitchellLiWeinholdetal.2016, author = {Mitchell, Jonathan S. and Li, Ni and Weinhold, Niels and F{\"o}rsti, Asta and Ali, Mina and van Duin, Mark and Thorleifsson, Gudmar and Johnson, David C. and Chen, Bowang and Halvarsson, Britt-Marie and Gudbjartsson, Daniel F. and Kuiper, Rowan and Stephens, Owen W. and Bertsch, Uta and Broderick, Peter and Campo, Chiara and Einsele, Hermann and Gregory, Walter A. and Gullberg, Urban and Henrion, Marc and Hillengass, Jens and Hoffmann, Per and Jackson, Graham H. and Johnsson, Ellinor and J{\"o}ud, Magnus and Kristinsson, Sigurdur Y. and Lenhoff, Stig and Lenive, Oleg and Mellqvist, Ulf-Henrik and Migliorini, Gabriele and Nahi, Hareth and Nelander, Sven and Nickel, Jolanta and N{\"o}then, Markus M. and Rafnar, Thorunn and Ross, Fiona M. and da Silva Filho, Miguel Inacio and Swaminathan, Bhairavi and Thomsen, Hauke and Turesson, Ingemar and Vangsted, Annette and Vogel, Ulla and Waage, Anders and Walker, Brian A. and Wihlborg, Anna-Karin and Broyl, Annemiek and Davies, Faith E. and Thorsteinsdottir, Unnur and Langer, Christian and Hansson, Markus and Kaiser, Martin and Sonneveld, Pieter and Stefansson, Kari and Morgan, Gareth J. and Goldschmidt, Hartmut and Hemminki, Kari and Nilsson, Bj{\"o}rn and Houlston, Richard S.}, title = {Genome-wide association study identifies multiple susceptibility loci for multiple myeloma}, series = {Nature Communications}, volume = {7}, journal = {Nature Communications}, doi = {10.1038/ncomms12050}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-165983}, pages = {12050}, year = {2016}, abstract = {Multiple myeloma (MM) is a plasma cell malignancy with a significant heritable basis. Genome-wide association studies have transformed our understanding of MM predisposition, but individual studies have had limited power to discover risk loci. Here we perform a meta-analysis of these GWAS, add a new GWAS and perform replication analyses resulting in 9,866 cases and 239,188 controls. We confirm all nine known risk loci and discover eight new loci at 6p22.3 (rs34229995, P=1.31 × 10-8), 6q21 (rs9372120, P=9.09 × 10-15), 7q36.1 (rs7781265, P=9.71 × 10-9), 8q24.21 (rs1948915, P=4.20 × 10-11), 9p21.3 (rs2811710, P=1.72 × 10-13), 10p12.1 (rs2790457, P=1.77 × 10-8), 16q23.1 (rs7193541, P=5.00 × 10-12) and 20q13.13 (rs6066835, P=1.36 × 10-13), which localize in or near to JARID2, ATG5, SMARCD3, CCAT1, CDKN2A, WAC, RFWD3 and PREX1. These findings provide additional support for a polygenic model of MM and insight into the biological basis of tumour development.}, language = {en} } @article{KepplerWeissbachLangeretal.2016, author = {Keppler, Sarah and Weißbach, Susann and Langer, Christian and Knop, Stefan and Pischimarov, Jordan and Kull, Miriam and St{\"u}hmer, Thorsten and Steinbrunn, Torsten and Bargou, Ralf and Einsele, Hermann and Rosenwald, Andreas and Leich, Ellen}, title = {Rare SNPs in receptor tyrosine kinases are negative outcome predictors in multiple myeloma}, series = {Oncotarget}, volume = {7}, journal = {Oncotarget}, number = {25}, doi = {10.18632/oncotarget.9607}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-177840}, pages = {38762-38774}, year = {2016}, abstract = {Multiple myeloma (MM) is a plasma cell disorder that is characterized by a great genetic heterogeneity. Recent next generation sequencing studies revealed an accumulation of tumor-associated mutations in receptor tyrosine kinases (RTKs) which may also contribute to the activation of survival pathways in MM. To investigate the clinical role of RTK-mutations in MM, we deep-sequenced the coding DNA-sequence of EGFR, EPHA2, ERBB3, IGF1R, NTRK1 and NTRK2 which were previously found to be mutated in MM, in 75 uniformly treated MM patients of the "Deutsche Studiengruppe Multiples Myelom". Subsequently, we correlated the detected mutations with common cytogenetic alterations and clinical parameters. We identified 11 novel non-synonymous SNVs or rare patient-specific SNPs, not listed in the SNP databases 1000 genomes and dbSNP, in 10 primary MM cases. The mutations predominantly affected the tyrosine-kinase and ligand-binding domains and no correlation with cytogenetic parameters was found. Interestingly, however, patients with RTK-mutations, specifically those with rare patient-specific SNPs, showed a significantly lower overall, event-free and progression-free survival. This indicates that RTK SNVs and rare patient-specific RTK SNPs are of prognostic relevance and suggests that MM patients with RTK-mutations could potentially profit from treatment with RTK-inhibitors.}, language = {en} } @article{CzakaiLeonhardtDixetal.2016, author = {Czakai, Kristin and Leonhardt, Ines and Dix, Andreas and Bonin, Michael and Linde, Joerg and Einsele, Hermann and Kurzai, Oliver and Loeffler, J{\"u}rgen}, title = {Kr{\"u}ppel-like Factor 4 modulates interleukin-6 release in human dendritic cells after in vitro stimulation with Aspergillus fumigatus and Candida albicans}, series = {Scientific Reports}, volume = {6}, journal = {Scientific Reports}, doi = {10.1038/srep27990}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-181185}, year = {2016}, abstract = {Invasive fungal infections are associated with high mortality rates and are mostly caused by the opportunistic fungi Aspergillus fumigatus and Candida albicans. Immune responses against these fungi are still not fully understood. Dendritic cells (DCs) are crucial players in initiating innate and adaptive immune responses against fungal infections. The immunomodulatory effects of fungi were compared to the bacterial stimulus LPS to determine key players in the immune response to fungal infections. A genome wide study of the gene regulation of human monocyte-derived dendritic cells (DCs) confronted with A. fumigatus, C. albicans or LPS was performed and Kr{\"u}ppel-like factor 4 (KLF4) was identified as the only transcription factor that was down-regulated in DCs by both fungi but induced by stimulation with LPS. Downstream analysis demonstrated the influence of KLF4 on the interleukine-6 expression in human DCs. Furthermore, KLF4 regulation was shown to be dependent on pattern recognition receptor ligation. Therefore KLF4 was identified as a controlling element in the IL-6 immune response with a unique expression pattern comparing fungal and LPS stimulation.}, language = {en} } @article{ChopraBiehlSteinfattetal.2016, author = {Chopra, Martin and Biehl, Marlene and Steinfatt, Tim and Brandl, Andreas and Kums, Juliane and Amich, Jorge and Vaeth, Martin and Kuen, Janina and Holtappels, Rafaela and Podlech, J{\"u}rgen and Mottok, Anja and Kraus, Sabrina and Jord{\´a}n-Garotte, Ana-Laura and B{\"a}uerlein, Carina A. and Brede, Christian and Ribechini, Eliana and Fick, Andrea and Seher, Axel and Polz, Johannes and Ottmueller, Katja J. and Baker, Jeannette and Nishikii, Hidekazu and Ritz, Miriam and Mattenheimer, Katharina and Schwinn, Stefanie and Winter, Thorsten and Sch{\"a}fer, Viktoria and Krappmann, Sven and Einsele, Hermann and M{\"u}ller, Thomas D. and Reddehase, Matthias J. and Lutz, Manfred B. and M{\"a}nnel, Daniela N. and Berberich-Siebelt, Friederike and Wajant, Harald and Beilhack, Andreas}, title = {Exogenous TNFR2 activation protects from acute GvHD via host T reg cell expansion}, series = {Journal of Experimental Medicine}, volume = {213}, journal = {Journal of Experimental Medicine}, number = {9}, doi = {10.1084/jem.20151563}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-187640}, pages = {1881-1900}, year = {2016}, abstract = {Donor CD4\(^+\)Foxp3\(^+\) regulatory T cells (T reg cells) suppress graft-versus-host disease (GvHD) after allogeneic hematopoietic stem cell transplantation (HCT allo-HCT]). Current clinical study protocols rely on the ex vivo expansion of donor T reg cells and their infusion in high numbers. In this study, we present a novel strategy for inhibiting GvHD that is based on the in vivo expansion of recipient T reg cells before allo-HCT, exploiting the crucial role of tumor necrosis factor receptor 2 (TNFR2) in T reg cell biology. Expanding radiation-resistant host T reg cells in recipient mice using a mouse TNFR2-selective agonist before allo-HCT significantly prolonged survival and reduced GvHD severity in a TNFR2-and T reg cell-dependent manner. The beneficial effects of transplanted T cells against leukemia cells and infectious pathogens remained unaffected. A corresponding human TNFR2-specific agonist expanded human T reg cells in vitro. These observations indicate the potential of our strategy to protect allo-HCT patients from acute GvHD by expanding T reg cells via selective TNFR2 activation in vivo.}, language = {en} } @article{UllmannSchmidtHieberBertzetal.2016, author = {Ullmann, Andrew J. and Schmidt-Hieber, Martin and Bertz, Hartmut and Heinz, Werner J. and Kiehl, Michael and Kr{\"u}ger, William and Mousset, Sabine and Neuburger, Stefan and Neumann, Silke and Penack, Olaf and Silling, Gerda and Vehreschild, J{\"o}rg Janne and Einsele, Hermann and Maschmeyer, Georg}, title = {Infectious diseases in allogeneic haematopoietic stem cell transplantation: prevention and prophylaxis strategy guidelines 2016}, series = {Annals of Hematology}, volume = {95}, journal = {Annals of Hematology}, number = {9}, organization = {Infectious Diseases Working Party of the German Society for Hematology and Medical Oncology (AGIHO/DGHO) and the DAG-KBT (German Working Group for Blood and Marrow Transplantation)}, doi = {10.1007/s00277-016-2711-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-187587}, pages = {1435-1455}, year = {2016}, abstract = {Infectious complications after allogeneic haematopoietic stem cell transplantation (allo-HCT) remain a clinical challenge. This is a guideline provided by the AGIHO (Infectious Diseases Working Group) of the DGHO (German Society for Hematology and Medical Oncology). A core group of experts prepared a preliminary guideline, which was discussed, reviewed, and approved by the entire working group. The guideline provides clinical recommendations for the preventive management including prophylactic treatment of viral, bacterial, parasitic, and fungal diseases. The guideline focuses on antimicrobial agents but includes recommendations on the use of vaccinations. This is the updated version of the AGHIO guideline in the field of allogeneic haematopoietic stem cell transplantation utilizing methods according to evidence-based medicine criteria.}, language = {en} } @article{SanMiguelEinseleMoreau2016, author = {San-Miguel, Jesus F. and Einsele, Hermann and Moreau, Philippe}, title = {The Role of Panobinostat Plus Bortezomib and Dexamethasone in Treating Relapsed or Relapsed and Refractory Multiple Myeloma: A European Perspective}, series = {Advances in Therapy}, volume = {33}, journal = {Advances in Therapy}, number = {11}, doi = {10.1007/s12325-016-0413-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-186840}, pages = {1896-1920}, year = {2016}, abstract = {Panobinostat is an oral pan-histone deacetylase inhibitor developed by Novartis. Panobinostat acts via epigenetic modification and inhibition of the aggresome pathway. In August 2015, the European Commission authorized panobinostat for use in combination with bortezomib and dexamethasone for the treatment of relapsed or relapsed and refractory multiple myeloma (MM) in patients who have received aeyen2 prior regimens including bortezomib and an immunomodulatory drug. In January 2016, the National Institute for Health and Care Excellence recommended panobinostat for use in the same combination and patient population. The authorization and recommendation were based on results from the pivotal phase 3 PANORAMA 1 (NCT01023308) clinical trial, which demonstrated an improvement in median progression-free survival of 7.8 months for the three-drug combination compared with placebo plus bortezomib and dexamethasone in this patient population. This review will discuss the current treatment landscape for relapsed/refractory MM, the mechanism of action of panobinostat, clinical data supporting the European authorization, concerns about safety and strategies for mitigating toxicity, and how panobinostat fits into the current MM landscape in Europe.}, language = {en} } @article{LupianezVillaescusaCarvalhoetal.2016, author = {Lupia{\~n}ez, Carmen B. and Villaescusa, Maria T. and Carvalho, Agostinho and Springer, Jan and Lackner, Michaela and S{\´a}nchez-Maldonado, Jos{\´e} M. and Canet, Luz M. and Cunha, Cristina and Segura-Catena, Joana and Alcazar-Fuoli, Laura and Solano, Carlos and Fianchi, Luana and Pagano, Livio and Potenza, Leonardo and Aguado, Jos{\´e} M. and Luppi, Mario and Cuenca-Estrella, Manuel and Lass-Fl{\"o}rl, Cornelia and Einsele, Hermann and V{\´a}zquez, Lourdes and R{\´i}os-Tamayo, Rafael and Loeffler, J{\"u}rgen and Jurado, Manuel and Sainz, Juan}, title = {Common Genetic Polymorphisms within NF kappa B-Related Genes and the Risk of Developing Invasive Aspergillosis}, series = {Frontiers in Microbiology}, volume = {7}, journal = {Frontiers in Microbiology}, number = {1243}, doi = {10.3389/fmicb.2016.01243}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-165209}, year = {2016}, abstract = {Invasive Aspergillosis (IA) is an opportunistic infection caused by Aspergillus, a ubiquitously present airborne pathogenic mold. A growing number of studies suggest a major host genetic component in disease susceptibility. Here, we evaluated whether 14 single-nucleotide polymorphisms within NFκB1, NFκB2, RelA, RelB, Rel, and IRF4 genes influence the risk of IA in a population of 834 high-risk patients (157 IA and 677 non-IA) recruited through a collaborative effort involving the aspBIOmics consortium and four European clinical institutions. No significant overall associations between selected SNPs and the risk of IA were found in this large cohort. Although a hematopoietic stem cell transplantation (HSCT)-stratified analysis revealed that carriers of the IRF4rs12203592T/T genotype had a six-fold increased risk of developing the infection when compared with those carrying the C allele (ORREC = 6.24, 95\%CI 1.25-31.2, P = 0.026), the association of this variant with IA risk did not reach significance at experiment-wide significant threshold. In addition, we found an association of the IRF4AATC and IRF4GGTC haplotypes (not including the IRF4rs12203592T risk allele) with a decreased risk of IA but the magnitude of the association was similar to the one observed in the single-SNP analysis, which indicated that the haplotypic effect on IA risk was likely due to the IRF4rs12203592 SNP. Finally, no evidence of significant interactions among the genetic markers tested and the risk of IA was found. These results suggest that the SNPs on the studied genes do not have a clinically relevant impact on the risk of developing IA.}, language = {en} } @article{BergesKerkauWerneretal.2016, author = {Berges, Carsten and Kerkau, Thomas and Werner, Sandra and Wolf, Nelli and Winter, Nadine and H{\"u}nig, Thomas and Einsele, Hermann and Topp, Max S. and Beyersdorf, Niklas}, title = {Hsp90 inhibition ameliorates CD4\(^{+}\) T cell-mediated acute Graft versus Host disease in mice}, series = {Immunity, Inflammation and Disease}, volume = {4}, journal = {Immunity, Inflammation and Disease}, number = {4}, doi = {10.1002/iid3.127}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-168318}, pages = {463-473}, year = {2016}, abstract = {Introduction: For many patients with leukemia only allogeneic bone marrow transplantion provides a chance of cure. Co-transplanted mature donor T cells mediate the desired Graft versus Tumor (GvT) effect required to destroy residual leukemic cells. The donor T cells very often, however, also attack healthy tissue of the patient inducing acute Graft versus Host Disease (aGvHD)—a potentially life-threatening complication. Methods: Therefore, we used the well established C57BL/6 into BALB/c mouse aGvHD model to evaluate whether pharmacological inhibition of heat shock protein 90 (Hsp90) would protect the mice from aGvHD. Results: Treatment of the BALB/c recipient mice from day 0 to +2 after allogeneic CD4\(^{+}\) T cell transplantation with the Hsp90 inhibitor 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin (DMAG) partially protected the mice from aGvHD. DMAG treatment was, however, insufficient to prolong overall survival of leukemia-bearing mice after transplantation of allogeneic CD4\(^{+}\) and CD8\(^{+}\) T cells. Ex vivo analyses and in vitro experiments revealed that DMAG primarily inhibits conventional CD4\(^{+}\) T cells with a relative resistance of CD4\(^{+}\) regulatory and CD8\(^{+}\) T cells toward Hsp90 inhibition. Conclusions: Our data, thus, suggest that Hsp90 inhibition might constitute a novel approach to reduce aGvHD in patients without abrogating the desired GvT effect.}, language = {en} } @article{DixCzakaiSpringeretal.2016, author = {Dix, Andreas and Czakai, Kristin and Springer, Jan and Fliesser, Mirjam and Bonin, Michael and Guthke, Reinhard and Schmitt, Anna L. and Einsele, Hermann and Linde, J{\"o}rg and L{\"o}ffler, J{\"u}rgen}, title = {Genome-Wide Expression Profiling Reveals S100B as Biomarker for Invasive Aspergillosis}, series = {Frontiers in Microbiology}, journal = {Frontiers in Microbiology}, number = {7}, doi = {10.3389/fmicb.2016.00320}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-165386}, pages = {320}, year = {2016}, abstract = {Invasive aspergillosis (IA) is a devastating opportunistic infection and its treatment constitutes a considerable burden for the health care system. Immunocompromised patients are at an increased risk for IA, which is mainly caused by the species Aspergillus fumigatus. An early and reliable diagnosis is required to initiate the appropriate antifungal therapy. However, diagnostic sensitivity and accuracy still needs to be improved, which can be achieved at least partly by the definition of new biomarkers. Besides the direct detection of the pathogen by the current diagnostic methods, the analysis of the host response is a promising strategy toward this aim. Following this approach, we sought to identify new biomarkers for IA. For this purpose, we analyzed gene expression profiles of hematological patients and compared profiles of patients suffering from IA with non-IA patients. Based on microarray data, we applied a comprehensive feature selection using a random forest classifier. We identified the transcript coding for the S100 calcium-binding protein B (S100B) as a potential new biomarker for the diagnosis of IA. Considering the expression of this gene, we were able to classify samples from patients with IA with 82.3\% sensitivity and 74.6\% specificity. Moreover, we validated the expression of S100B in a real-time reverse transcription polymerase chain reaction (RT-PCR) assay and we also found a down-regulation of S100B in A. fumigatus stimulated DCs. An influence on the IL1B and CXCL1 downstream levels was demonstrated by this S100B knockdown. In conclusion, this study covers an effective feature selection revealing a key regulator of the human immune response during IA. S100B may represent an additional diagnostic marker that in combination with the established techniques may improve the accuracy of IA diagnosis.}, language = {en} } @article{KalledaAmichArslanetal.2016, author = {Kalleda, Natarajaswamy and Amich, Jorge and Arslan, Berkan and Poreddy, Spoorthi and Mattenheimer, Katharina and Mokhtari, Zeinab and Einsele, Hermann and Brock, Matthias and Heinze, Katrin Gertrud and Beilhack, Andreas}, title = {Dynamic Immune Cell Recruitment After Murine Pulmonary Aspergillus fumigatus Infection under Different Immunosuppressive Regimens}, series = {Frontiers in Microbiology}, volume = {7}, journal = {Frontiers in Microbiology}, number = {1107}, doi = {10.3389/fmicb.2016.01107}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-165368}, year = {2016}, abstract = {Humans are continuously exposed to airborne spores of the saprophytic fungus Aspergillus fumigatus. However, in healthy individuals pulmonary host defense mechanisms efficiently eliminate the fungus. In contrast, A. fumigatus causes devastating infections in immunocompromised patients. Host immune responses against A. fumigatus lung infections in immunocompromised conditions have remained largely elusive. Given the dynamic changes in immune cell subsets within tissues upon immunosuppressive therapy, we dissected the spatiotemporal pulmonary immune response after A. fumigatus infection to reveal basic immunological events that fail to effectively control invasive fungal disease. In different immunocompromised murine models, myeloid, notably neutrophils, and macrophages, but not lymphoid cells were strongly recruited to the lungs upon infection. Other myeloid cells, particularly dendritic cells and monocytes, were only recruited to lungs of corticosteroid treated mice, which developed a strong pulmonary inflammation after infection. Lymphoid cells, particularly CD4\(^+\) or CD8\(^+\) T-cells and NK cells were highly reduced upon immunosuppression and not recruited after A. fumigatus infection. Moreover, adoptive CD11b\(^+\) myeloid cell transfer rescued cyclophosphamide immunosuppressed mice from lethal A. fumigatus infection but not cortisone and cyclophosphamide immunosuppressed mice. Our findings illustrate that CD11b\(^+\) myeloid cells are critical for anti-A. fumigatus defense under cyclophosphamide immunosuppressed conditions.}, language = {en} }