@article{FrancoEspinGatiusArmengoletal.2022, author = {Franco-Espin, Julio and Gatius, Ala{\´o} and Armengol, Jos{\´e} {\´A}ngel and Arumugam, Saravanan and Moradi, Mehri and Sendtner, Michael and Calder{\´o}, Jordi and Tabares, Lucia}, title = {SMN is physiologically downregulated at wild-type motor nerve terminals but aggregates together with neurofilaments in SMA mouse models}, series = {Biomolecules}, volume = {12}, journal = {Biomolecules}, number = {10}, issn = {2218-273X}, doi = {10.3390/biom12101524}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-290263}, year = {2022}, abstract = {Survival motor neuron (SMN) is an essential and ubiquitously expressed protein that participates in several aspects of RNA metabolism. SMN deficiency causes a devastating motor neuron disease called spinal muscular atrophy (SMA). SMN forms the core of a protein complex localized at the cytoplasm and nuclear gems and that catalyzes spliceosomal snRNP particle synthesis. In cultured motor neurons, SMN is also present in dendrites and axons, and forms part of the ribonucleoprotein transport granules implicated in mRNA trafficking and local translation. Nevertheless, the distribution, regulation, and role of SMN at the axons and presynaptic motor terminals in vivo are still unclear. By using conventional confocal microscopy and STED super-resolution nanoscopy, we found that SMN appears in the form of granules distributed along motor axons at nerve terminals. Our fluorescence in situ hybridization and electron microscopy studies also confirmed the presence of β-actin mRNA, ribosomes, and polysomes in the presynaptic motor terminal, key elements of the protein synthesis machinery involved in local translation in this compartment. SMN granules co-localize with the microtubule-associated protein 1B (MAP1B) and neurofilaments, suggesting that the cytoskeleton participates in transporting and positioning the granules. We also found that, while SMN granules are physiologically downregulated at the presynaptic element during the period of postnatal maturation in wild-type (non-transgenic) mice, they accumulate in areas of neurofilament aggregation in SMA mice, suggesting that the high expression of SMN at the NMJ, together with the cytoskeletal defects, contribute to impairing the bi-directional traffic of proteins and organelles between the axon and the presynaptic terminal.}, language = {en} } @article{HaberstumpfForsterLeinweberetal.2022, author = {Haberstumpf, Sophia and Forster, Andr{\´e} and Leinweber, Jonas and Rauskolb, Stefanie and Hewig, Johannes and Sendtner, Michael and Lauer, Martin and Polak, Thomas and Deckert, J{\"u}rgen and Herrmann, Martin J.}, title = {Measurement invariance testing of longitudinal neuropsychiatric test scores distinguishes pathological from normative cognitive decline and highlights its potential in early detection research}, series = {Journal of Neuropsychology}, volume = {16}, journal = {Journal of Neuropsychology}, number = {2}, doi = {10.1111/jnp.12269}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-318932}, pages = {324 -- 352}, year = {2022}, abstract = {Objective Alzheimer's disease (AD) is a growing challenge worldwide, which is why the search for early-onset predictors must be focused as soon as possible. Longitudinal studies that investigate courses of neuropsychological and other variables screen for such predictors correlated to mild cognitive impairment (MCI). However, one often neglected issue in analyses of such studies is measurement invariance (MI), which is often assumed but not tested for. This study uses the absence of MI (non-MI) and latent factor scores instead of composite variables to assess properties of cognitive domains, compensation mechanisms, and their predictability to establish a method for a more comprehensive understanding of pathological cognitive decline. Methods An exploratory factor analysis (EFA) and a set of increasingly restricted confirmatory factor analyses (CFAs) were conducted to find latent factors, compared them with the composite approach, and to test for longitudinal (partial-)MI in a neuropsychiatric test battery, consisting of 14 test variables. A total of 330 elderly (mean age: 73.78 ± 1.52 years at baseline) were analyzed two times (3 years apart). Results EFA revealed a four-factor model representing declarative memory, attention, working memory, and visual-spatial processing. Based on CFA, an accurate model was estimated across both measurement timepoints. Partial non-MI was found for parameters such as loadings, test- and latent factor intercepts as well as latent factor variances. The latent factor approach was preferable to the composite approach. Conclusion The overall assessment of non-MI latent factors may pose a possible target for this field of research. Hence, the non-MI of variances indicated variables that are especially suited for the prediction of pathological cognitive decline, while non-MI of intercepts indicated general aging-related decline. As a result, the sole assessment of MI may help distinguish pathological from normative aging processes and additionally may reveal compensatory neuropsychological mechanisms.}, language = {en} } @article{DengReinhardHennleinetal.2022, author = {Deng, Chunchu and Reinhard, Sebastian and Hennlein, Luisa and Eilts, Janna and Sachs, Stefan and Doose, S{\"o}ren and Jablonka, Sibylle and Sauer, Markus and Moradi, Mehri and Sendtner, Michael}, title = {Impaired dynamic interaction of axonal endoplasmic reticulum and ribosomes contributes to defective stimulus-response in spinal muscular atrophy}, series = {Translational Neurodegeneration}, volume = {11}, journal = {Translational Neurodegeneration}, number = {1}, issn = {2047-9158}, doi = {10.1186/s40035-022-00304-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300649}, year = {2022}, abstract = {Background: Axonal degeneration and defects in neuromuscular neurotransmission represent a pathological hallmark in spinal muscular atrophy (SMA) and other forms of motoneuron disease. These pathological changes do not only base on altered axonal and presynaptic architecture, but also on alterations in dynamic movements of organelles and subcellular structures that are not necessarily reflected by static histopathological changes. The dynamic interplay between the axonal endoplasmic reticulum (ER) and ribosomes is essential for stimulus-induced local translation in motor axons and presynaptic terminals. However, it remains enigmatic whether the ER and ribosome crosstalk is impaired in the presynaptic compartment of motoneurons with Smn (survival of motor neuron) deficiency that could contribute to axonopathy and presynaptic dysfunction in SMA. Methods: Using super-resolution microscopy, proximity ligation assay (PLA) and live imaging of cultured motoneurons from a mouse model of SMA, we investigated the dynamics of the axonal ER and ribosome distribution and activation. Results: We observed that the dynamic remodeling of ER was impaired in axon terminals of Smn-deficient motoneurons. In addition, in axon terminals of Smn-deficient motoneurons, ribosomes failed to respond to the brain-derived neurotrophic factor stimulation, and did not undergo rapid association with the axonal ER in response to extracellular stimuli. Conclusions: These findings implicate impaired dynamic interplay between the ribosomes and ER in axon terminals of motoneurons as a contributor to the pathophysiology of SMA and possibly also other motoneuron diseases.}, language = {en} } @article{GhanawiHennleinZareetal.2021, author = {Ghanawi, Hanaa and Hennlein, Luisa and Zare, Abdolhossein and Bader, Jakob and Salehi, Saeede and Hornburg, Daniel and Ji, Changhe and Sivadasan, Rajeeve and Drepper, Carsten and Meissner, Felix and Mann, Matthias and Jablonka, Sibylle and Briese, Michael and Sendtner, Michael}, title = {Loss of full-length hnRNP R isoform impairs DNA damage response in motoneurons by inhibiting Yb1 recruitment to chromatin}, series = {Nucleic Acids Research}, volume = {49}, journal = {Nucleic Acids Research}, number = {21}, doi = {10.1093/nar/gkab1120}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-265687}, pages = {12284-12305}, year = {2021}, abstract = {Neurons critically rely on the functions of RNA-binding proteins to maintain their polarity and resistance to neurotoxic stress. HnRNP R has a diverse range of post-transcriptional regulatory functions and is important for neuronal development by regulating axon growth. Hnrnpr pre-mRNA undergoes alternative splicing giving rise to a full-length protein and a shorter isoform lacking its N-terminal acidic domain. To investigate functions selectively associated with the full-length hnRNP R isoform, we generated a Hnrnpr knockout mouse (Hnrnpr\(^{tm1a/tm1a}\)) in which expression of full-length hnRNP R was abolished while production of the truncated hnRNP R isoform was retained. Motoneurons cultured from Hnrnpr\(^{tm1a/tm1a}\) mice did not show any axonal growth defects but exhibited enhanced accumulation of double-strand breaks and an impaired DNA damage response upon exposure to genotoxic agents. Proteomic analysis of the hnRNP R interactome revealed the multifunctional protein Yb1 as a top interactor. Yb1-depleted motoneurons were defective in DNA damage repair. We show that Yb1 is recruited to chromatin upon DNA damage where it interacts with gamma-H2AX, a mechanism that is dependent on full-length hnRNP R. Our findings thus suggest a novel role of hnRNP R in maintaining genomic integrity and highlight the function of its N-terminal acidic domain in this context.}, language = {en} } @article{JiBaderRamanathanetal.2021, author = {Ji, Changhe and Bader, Jakob and Ramanathan, Pradhipa and Hennlein, Luisa and Meissner, Felix and Jablonka, Sibylle and Mann, Matthias and Fischer, Utz and Sendtner, Michael and Briese, Michael}, title = {Interaction of 7SK with the Smn complex modulates snRNP production}, series = {Nature Communications}, volume = {12}, journal = {Nature Communications}, number = {1}, doi = {10.1038/s41467-021-21529-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259125}, pages = {1278}, year = {2021}, abstract = {Gene expression requires tight coordination of the molecular machineries that mediate transcription and splicing. While the interplay between transcription kinetics and spliceosome fidelity has been investigated before, less is known about mechanisms regulating the assembly of the spliceosomal machinery in response to transcription changes. Here, we report an association of the Smn complex, which mediates spliceosomal snRNP biogenesis, with the 7SK complex involved in transcriptional regulation. We found that Smn interacts with the 7SK core components Larp7 and Mepce and specifically associates with 7SK subcomplexes containing hnRNP R. The association between Smn and 7SK complexes is enhanced upon transcriptional inhibition leading to reduced production of snRNPs. Taken together, our findings reveal a functional association of Smn and 7SK complexes that is governed by global changes in transcription. Thus, in addition to its canonical nuclear role in transcriptional regulation, 7SK has cytosolic functions in fine-tuning spliceosome production according to transcriptional demand.}, language = {en} } @article{BrieseSendtner2021, author = {Briese, Michael and Sendtner, Michael}, title = {Keeping the balance: the noncoding RNA 7SK as a master regulator for neuron development and function}, series = {BioEssays}, volume = {43}, journal = {BioEssays}, number = {8}, doi = {10.1002/bies.202100092}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256613}, year = {2021}, abstract = {The noncoding RNA 7SK is a critical regulator of transcription by adjusting the activity of the kinase complex P-TEFb. Release of P-TEFb from 7SK stimulates transcription at many genes by promoting productive elongation. Conversely, P-TEFb sequestration by 7SK inhibits transcription. Recent studies have shown that 7SK functions are particularly important for neuron development and maintenance and it can thus be hypothesized that 7SK is at the center of many signaling pathways contributing to neuron function. 7SK activates neuronal gene expression programs that are key for terminal differentiation of neurons. Proteomics studies revealed a complex protein interactome of 7SK that includes several RNA-binding proteins. Some of these novel 7SK subcomplexes exert non-canonical cytosolic functions in neurons by regulating axonal mRNA transport and fine-tuning spliceosome production in response to transcription alterations. Thus, a picture emerges according to which 7SK acts as a multi-functional RNA scaffold that is integral for neuron homeostasis.}, language = {en} } @article{AndreskaLueningschroerSendtner2020, author = {Andreska, Thomas and L{\"u}ningschr{\"o}r, Patrick and Sendtner, Michael}, title = {Regulation of TrkB cell surface expression — a mechanism for modulation of neuronal responsiveness to brain-derived neurotrophic factor}, series = {Cell and Tissue Research}, volume = {382}, journal = {Cell and Tissue Research}, doi = {10.1007/s00441-020-03224-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-235055}, pages = {5-14}, year = {2020}, abstract = {Neurotrophin signaling via receptor tyrosine kinases is essential for the development and function of the nervous system in vertebrates. TrkB activation and signaling show substantial differences to other receptor tyrosine kinases of the Trk family that mediate the responses to nerve growth factor and neurotrophin-3. Growing evidence suggests that TrkB cell surface expression is highly regulated and determines the sensitivity of neurons to brain-derived neurotrophic factor (BDNF). This translocation of TrkB depends on co-factors and modulators of cAMP levels, N-glycosylation, and receptor transactivation. This process can occur in very short time periods and the resulting rapid modulation of target cell sensitivity to BDNF could represent a mechanism for fine-tuning of synaptic plasticity and communication in complex neuronal networks. This review focuses on those modulatory mechanisms in neurons that regulate responsiveness to BDNF via control of TrkB surface expression.}, language = {en} } @article{MarkertSkoruppaYuetal.2020, author = {Markert, Sebastian M. and Skoruppa, Michael and Yu, Bin and Mulcahy, Ben and Zhen, Mai and Gao, Shangbang and Sendtner, Michael and Stigloher, Christian}, title = {Overexpression of an ALS-associated FUS mutation in C. elegans disrupts NMJ morphology and leads to defective neuromuscular transmission}, series = {Biology Open}, volume = {9}, journal = {Biology Open}, doi = {10.1242/bio.055129}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-230662}, year = {2020}, abstract = {The amyotrophic lateral sclerosis (ALS) neurodegenerative disorder has been associated with multiple genetic lesions, including mutations in the gene for fused in sarcoma (FUS), a nuclear-localized RNA/DNA-binding protein. Neuronal expression of the pathological form of FUS proteins in Caenorhabditis elegans results in mislocalization and aggregation of FUS in the cytoplasm, and leads to impairment of motility. However, the mechanisms by which the mutant FUS disrupts neuronal health and function remain unclear. Here we investigated the impact of ALS-associated FUS on motor neuron health using correlative light and electron microscopy, electron tomography, and electrophysiology. We show that ectopic expression of wild-type or ALS-associated human FUS impairs synaptic vesicle docking at neuromuscular junctions. ALS-associated FUS led to the emergence of a population of large, electron-dense, and filament-filled endosomes. Electrophysiological recording revealed reduced transmission from motor neurons to muscles. Together, these results suggest a pathological effect of ALS-causing FUS at synaptic structure and function organization.}, language = {en} } @article{BrieseSaalBauernschubertLueningschroeretal.2020, author = {Briese, Michael and Saal-Bauernschubert, Lena and L{\"u}ningschr{\"o}r, Patrick and Moradi, Mehri and Dombert, Benjamin and Surrey, Verena and Appenzeller, Silke and Deng, Chunchu and Jablonka, Sibylle and Sendtner, Michael}, title = {Loss of Tdp-43 disrupts the axonal transcriptome of motoneurons accompanied by impaired axonal translation and mitochondria function}, series = {Acta Neuropathologica Communications}, volume = {8}, journal = {Acta Neuropathologica Communications}, doi = {10.1186/s40478-020-00987-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-230322}, year = {2020}, abstract = {Protein inclusions containing the RNA-binding protein TDP-43 are a pathological hallmark of amyotrophic lateral sclerosis and other neurodegenerative disorders. The loss of TDP-43 function that is associated with these inclusions affects post-transcriptional processing of RNAs in multiple ways including pre-mRNA splicing, nucleocytoplasmic transport, modulation of mRNA stability and translation. In contrast, less is known about the role of TDP-43 in axonal RNA metabolism in motoneurons. Here we show that depletion of Tdp-43 in primary motoneurons affects axon growth. This defect is accompanied by subcellular transcriptome alterations in the axonal and somatodendritic compartment. The axonal localization of transcripts encoding components of the cytoskeleton, the translational machinery and transcripts involved in mitochondrial energy metabolism were particularly affected by loss of Tdp-43. Accordingly, we observed reduced protein synthesis and disturbed mitochondrial functions in axons of Tdp-43-depleted motoneurons. Treatment with nicotinamide rescued the axon growth defect associated with loss of Tdp-43. These results show that Tdp-43 depletion in motoneurons affects several pathways integral to axon health indicating that loss of TDP-43 function could thus make a major contribution to axonal pathomechanisms in ALS.}, language = {en} } @article{LueningschroerSlottaHeimannetal.2020, author = {L{\"u}ningschr{\"o}r, Patrick and Slotta, Carsten and Heimann, Peter and Briese, Michael and Weikert, Ulrich M. and Massih, Bita and Appenzeller, Silke and Sendtner, Michael and Kaltschmidt, Christian and Kaltschmidt, Barbara}, title = {Absence of Plekhg5 Results in Myelin Infoldings Corresponding to an Impaired Schwann Cell Autophagy, and a Reduced T-Cell Infiltration Into Peripheral Nerves}, series = {Frontiers in Cellular Neuroscience}, volume = {14}, journal = {Frontiers in Cellular Neuroscience}, issn = {1662-5102}, doi = {10.3389/fncel.2020.00185}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-207538}, year = {2020}, abstract = {Inflammation and dysregulation of the immune system are hallmarks of several neurodegenerative diseases. An activated immune response is considered to be the cause of myelin breakdown in demyelinating disorders. In the peripheral nervous system (PNS), myelin can be degraded in an autophagy-dependent manner directly by Schwann cells or by macrophages, which are modulated by T-lymphocytes. Here, we show that the NF-κB activator Pleckstrin homology containing family member 5 (Plekhg5) is involved in the regulation of both Schwann cell autophagy and recruitment of T-lymphocytes in peripheral nerves during motoneuron disease. Plekhg5-deficient mice show defective axon/Schwann cell units characterized by myelin infoldings in peripheral nerves. Even at late stages, Plekhg5-deficient mice do not show any signs of demyelination and inflammation. Using RNAseq, we identified a transcriptional signature for an impaired immune response in sciatic nerves, which manifested in a reduced number of CD4\(^+\) and CD8\(^+\) T-cells. These findings identify Plekhg5 as a promising target to impede myelin breakdown in demyelinating PNS disorders.}, language = {en} } @article{DuezelvanPraagSendtner2016, author = {D{\"u}zel, Emrah and van Praag, Henriette and Sendtner, Michael}, title = {Can physical exercise in old age improve memory and hippocampal function?}, series = {Brain}, volume = {139}, journal = {Brain}, number = {3}, doi = {10.1093/brain/awv407}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-190721}, pages = {662-673}, year = {2016}, abstract = {Physical exercise can convey a protective effect against cognitive decline in ageing and Alzheimer's disease. While the long-term health-promoting and protective effects of exercise are encouraging, it's potential to induce neuronal and vascular plasticity in the ageing brain is still poorly understood. It remains unclear whether exercise slows the trajectory of normal ageing by modifying vascular and metabolic risk factors and/or consistently boosts brain function by inducing structural and neurochemical changes in the hippocampus and related medial temporal lobe circuitry—brain areas that are important for learning and memory. Hence, it remains to be established to what extent exercise interventions in old age can improve brain plasticity above and beyond preservation of function. Existing data suggest that exercise trials aiming for improvement and preservation may require different outcome measures and that the balance between the two may depend on exercise intensity and duration, the presence of preclinical Alzheimer's disease pathology, vascular and metabolic risk factors and genetic variability.}, language = {en} } @article{MaassDuezelBrigadskietal.2016, author = {Maass, Anne and D{\"u}zel, Sandra and Brigadski, Tanja and Goerke, Monique and Becke, Andreas and Sobieray, Uwe and Neumann, Katja and L{\"o}vd{\´e}n, Martin and Lindenberger, Ulman and B{\"a}ckman, Lars and Braun-Dullaeus, R{\"u}diger and Ahrens, D{\"o}rte and Heinze, Hans-Jochen and M{\"u}ller, Notger G. and Lessmann, Volkmar and Sendtner, Michael and D{\"u}zel, Emrah}, title = {Relationships of peripheral IGF-1, VEGF and BDNF levels to exercise-related changes in memory, hippocampal perfusion and volumes in older adults}, series = {NeuroImage}, volume = {131}, journal = {NeuroImage}, doi = {10.1016/j.neuroimage.2015.10.084}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-189219}, pages = {142-154}, year = {2016}, abstract = {Animal models point towards a key role of brain-derived neurotrophic factor (BDNF), insulin-like growth factor-I (IGF-I) and vascular endothelial growth factor (VEGF) in mediating exercise-induced structural and functional changes in the hippocampus. Recently, also platelet derived growth factor-C (PDGF-C) has been shown to promote blood vessel growth and neuronal survival. Moreover, reductions of these neurotrophic and angiogenic factors in old age have been related to hippocampal atrophy, decreased vascularization and cognitive decline. In a 3-month aerobic exercise study, forty healthy older humans (60 to 77 years) were pseudo-randomly assigned to either an aerobic exercise group (indoor treadmill, n = 21) or to a control group (indoor progressive-muscle relaxation/stretching, n = 19). As reported recently, we found evidence for fitness-related perfusion changes of the aged human hippocampus that were closely linked to changes in episodic memory function. Here, we test whether peripheral levels of BDNF, IGF-I, VEGF or PDGF-C are related to changes in hippocampal blood flow, volume and memory performance. Growth factor levels were not significantly affected by exercise, and their changes were not related to changes in fitness or perfusion. However, changes in IGF-I levels were positively correlated with hippocampal volume changes (derived by manual volumetry and voxel-based morphometry) and late verbal recall performance, a relationship that seemed to be independent of fitness, perfusion or their changes over time. These preliminary findings link IGF-I levels to hippocampal volume changes and putatively hippocampus-dependent memory changes that seem to occur over time independently of exercise. We discuss methodological shortcomings of our study and potential differences in the temporal dynamics of how IGF-1, VEGF and BDNF may be affected by exercise and to what extent these differences may have led to the negative findings reported here.}, language = {en} } @article{YadavSelvarajBenderetal.2016, author = {Yadav, Preeti and Selvaraj, Bhuvaneish T. and Bender, Florian L. P. and Behringer, Marcus and Moradi, Mehri and Sivadasan, Rajeeve and Dombert, Benjamin and Blum, Robert and Asan, Esther and Sauer, Markus and Julien, Jean-Pierre and Sendtner, Michael}, title = {Neurofilament depletion improves microtubule dynamics via modulation of Stat3/stathmin signaling}, series = {Acta Neuropathologica}, volume = {132}, journal = {Acta Neuropathologica}, number = {1}, doi = {10.1007/s00401-016-1564-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-188234}, pages = {93-110}, year = {2016}, abstract = {In neurons, microtubules form a dense array within axons, and the stability and function of this microtubule network is modulated by neurofilaments. Accumulation of neurofilaments has been observed in several forms of neurodegenerative diseases, but the mechanisms how elevated neurofilament levels destabilize axons are unknown so far. Here, we show that increased neurofilament expression in motor nerves of pmn mutant mice, a model of motoneuron disease, causes disturbed microtubule dynamics. The disease is caused by a point mutation in the tubulin-specific chaperone E (Tbce) gene, leading to an exchange of the most C-terminal amino acid tryptophan to glycine. As a consequence, the TBCE protein becomes instable which then results in destabilization of axonal microtubules and defects in axonal transport, in particular in motoneurons. Depletion of neurofilament increases the number and regrowth of microtubules in pmn mutant motoneurons and restores axon elongation. This effect is mediated by interaction of neurofilament with the stathmin complex. Accumulating neurofilaments associate with stathmin in axons of pmn mutant motoneurons. Depletion of neurofilament by Nefl knockout increases Stat3-stathmin interaction and stabilizes the microtubules in pmn mutant motoneurons. Consequently, counteracting enhanced neurofilament expression improves axonal maintenance and prolongs survival of pmn mutant mice. We propose that this mechanism could also be relevant for other neurodegenerative diseases in which neurofilament accumulation and loss of microtubules are prominent features.}, language = {en} } @article{SchmittFunkBlumetal.2016, author = {Schmitt, Dominique and Funk, Natalia and Blum, Robert and Asan, Esther and Andersen, Lill and R{\"u}licke, Thomas and Sendtner, Michael and Buchner, Erich}, title = {Initial characterization of a Syap1 knock-out mouse and distribution of Syap1 in mouse brain and cultured motoneurons}, series = {Histochemistry and Cell Biology}, volume = {146}, journal = {Histochemistry and Cell Biology}, number = {4}, doi = {10.1007/s00418-016-1457-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-187258}, pages = {489-512}, year = {2016}, abstract = {Synapse-associated protein 1 (Syap1/BSTA) is the mammalian homologue of Sap47 (synapse-associated protein of 47 kDa) in Drosophila. Sap47 null mutant larvae show reduced short-term synaptic plasticity and a defect in associative behavioral plasticity. In cultured adipocytes, Syap1 functions as part of a complex that phosphorylates protein kinase B alpha/Akt1 (Akt1) at Ser\(^{473}\) and promotes differentiation. The role of Syap1 in the vertebrate nervous system is unknown. Here, we generated a Syap1 knock-out mouse and show that lack of Syap1 is compatible with viability and fertility. Adult knock-out mice show no overt defects in brain morphology. In wild-type brain, Syap1 is found widely distributed in synaptic neuropil, notably in regions rich in glutamatergic synapses, but also in perinuclear structures associated with the Golgi apparatus of specific groups of neuronal cell bodies. In cultured motoneurons, Syap1 is located in axons and growth cones and is enriched in a perinuclear region partially overlapping with Golgi markers. We studied in detail the influence of Syap1 knockdown and knockout on structure and development of these cells. Importantly, Syap1 knockout does not affect motoneuron survival or axon growth. Unexpectedly, neither knockdown nor knockout of Syap1 in cultured motoneurons is associated with reduced Ser\(^{473}\) or Thr\(^{308}\) phosphorylation of Akt. Our findings demonstrate a widespread expression of Syap1 in the mouse central nervous system with regionally specific distribution patterns as illustrated in particular for olfactory bulb, hippocampus, and cerebellum.}, language = {en} } @article{vonCollenbergSchmittRuelickeetal.2019, author = {von Collenberg, Cora R. and Schmitt, Dominique and R{\"u}licke, Thomas and Sendtner, Michael and Blum, Robert and Buchner, Erich}, title = {An essential role of the mouse synapse-associated protein Syap1 in circuits for spontaneous motor activity and rotarod balance}, series = {Biology Open}, volume = {8}, journal = {Biology Open}, doi = {10.1242/bio.042366}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201986}, pages = {bio042366}, year = {2019}, abstract = {Synapse-associated protein 1 (Syap1) is the mammalian homologue of synapse-associated protein of 47 kDa (Sap47) in Drosophila. Genetic deletion of Sap47 leads to deficiencies in short-term plasticity and associative memory processing in flies. In mice, Syap1 is prominently expressed in the nervous system, but its function is still unclear. We have generated Syap1 knockout mice and tested motor behaviour and memory. These mice are viable and fertile but display distinct deficiencies in motor behaviour. Locomotor activity specifically appears to be reduced in early phases when voluntary movement is initiated. On the rotarod, a more demanding motor test involving control by sensory feedback, Syap1-deficient mice dramatically fail to adapt to accelerated speed or to a change in rotation direction. Syap1 is highly expressed in cerebellar Purkinje cells and cerebellar nuclei. Thus, this distinct motor phenotype could be due to a so-far unknown function of Syap1 in cerebellar sensorimotor control. The observed motor defects are highly specific since other tests in the modified SHIRPA exam, as well as cognitive tasks like novel object recognition, Pavlovian fear conditioning, anxiety-like behaviour in open field dark-light transition and elevated plus maze do not appear to be affected in Syap1 knockout mice.}, language = {en} } @article{LueningschroerBinottiDombertetal.2017, author = {L{\"u}ningschr{\"o}r, Patrick and Binotti, Beyenech and Dombert, Benjamin and Heimann, Peter and Perez-Lara, Angel and Slotta, Carsten and Thau-Habermann, Nadine and von Collenberg, Cora R. and Karl, Franziska and Damme, Markus and Horowitz, Arie and Maystadt, Isabelle and F{\"u}chtbauer, Annette and F{\"u}chtbauer, Ernst-Martin and Jablonka, Sibylle and Blum, Robert and {\"U}{\c{c}}eyler, Nurcan and Petri, Susanne and Kaltschmidt, Barbara and Jahn, Reinhard and Kaltschmidt, Christian and Sendtner, Michael}, title = {Plekhg5-regulated autophagy of synaptic vesicles reveals a pathogenic mechanism in motoneuron disease}, series = {Nature Communications}, volume = {8}, journal = {Nature Communications}, number = {678}, doi = {10.1038/s41467-017-00689-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170048}, year = {2017}, abstract = {Autophagy-mediated degradation of synaptic components maintains synaptic homeostasis but also constitutes a mechanism of neurodegeneration. It is unclear how autophagy of synaptic vesicles and components of presynaptic active zones is regulated. Here, we show that Pleckstrin homology containing family member 5 (Plekhg5) modulates autophagy of synaptic vesicles in axon terminals of motoneurons via its function as a guanine exchange factor for Rab26, a small GTPase that specifically directs synaptic vesicles to preautophagosomal structures. Plekhg5 gene inactivation in mice results in a late-onset motoneuron disease, characterized by degeneration of axon terminals. Plekhg5-depleted cultured motoneurons show defective axon growth and impaired autophagy of synaptic vesicles, which can be rescued by constitutively active Rab26. These findings define a mechanism for regulating autophagy in neurons that specifically targets synaptic vesicles. Disruption of this mechanism may contribute to the pathophysiology of several forms of motoneuron disease.}, language = {en} } @article{GresleAlexandrouWuetal.2012, author = {Gresle, Melissa M. and Alexandrou, Estella and Wu, Qizhu and Egan, Gary and Jokubaitis, Vilija and Ayers, Margaret and Jonas, Anna and Doherty, William and Friedhuber, Anna and Shaw, Gerry and Sendtner, Michael and Emery, Ben and Kilpatrick, Trevor and Butzkueven, Helmut}, title = {Leukemia Inhibitory Factor Protects Axons in Experimental Autoimmune Encephalomyelitis via an Oligodendrocyte-Independent Mechanism}, series = {PLoS One}, volume = {7}, journal = {PLoS One}, number = {10}, doi = {10.1371/journal.pone.0047379}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-134617}, pages = {e47379}, year = {2012}, abstract = {Leukemia inhibitory factor (LIF) and Ciliary Neurotrophic factor (CNTF) are members of the interleukin-6 family of cytokines, defined by use of the gp130 molecule as an obligate receptor. In the murine experimental autoimmune encephalomyelitis (EAE) model, antagonism of LIF and genetic deletion of CNTF worsen disease. The potential mechanism of action of these cytokines in EAE is complex, as gp130 is expressed by all neural cells, and could involve immuno-modulation, reduction of oligodendrocyte injury, neuronal protection, or a combination of these actions. In this study we aim to investigate whether the beneficial effects of CNTF/LIF signalling in EAE are associated with axonal protection; and whether this requires signalling through oligodendrocytes. We induced MOG\(_{35-55}\) EAE in CNTF, LIF and double knockout mice. On a CNTF null background, LIF knockout was associated with increased EAE severity (EAE grade 2.1\(\pm\)0.14 vs 2.6\(\pm\)0.19; P<0.05). These mice also showed increased axonal damage relative to LIF heterozygous mice, as indicated by decreased optic nerve parallel diffusivity on MRI (1540\(\pm\)207 \(\mu\)m\(^2\)-/s vs 1310\(\pm\)175 \(\mu\)m\(^2\)-/s; P<0.05), and optic nerve (-12.5\%) and spinal cord (-16\%) axon densities; and increased serum neurofilament-H levels (2.5 fold increase). No differences in inflammatory cell numbers or peripheral auto-immune T-cell priming were evident. Oligodendrocyte-targeted gp130 knockout mice showed that disruption of CNTF/LIF signalling in these cells has no effect on acute EAE severity. These studies demonstrate that endogenous CNTF and LIF act centrally to protect axons from acute inflammatory destruction via an oligodendrocyte-independent mechanism.}, language = {en} } @article{ThangarajSelvarajFrankBenderetal.2012, author = {Thangaraj Selvaraj, Bhuvaneish and Frank, Nicolas and Bender, Florian L. P. and Asan, Esther and Sendtner, Michael}, title = {Local axonal function of STAT3 rescues axon degeneration in the pmn model of motoneuron disease}, series = {The Journal of Cell Biology}, volume = {199}, journal = {The Journal of Cell Biology}, number = {3}, doi = {10.1083/jcb.201203109}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-154675}, pages = {437 -- 451}, year = {2012}, abstract = {Axonal maintenance, plasticity, and regeneration are influenced by signals from neighboring cells, in particular Schwann cells of the peripheral nervous system. Schwann cells produce neurotrophic factors, but the mechanisms by which ciliary neurotrophic factor (CNTF) and other neurotrophic molecules modify the axonal cytoskeleton are not well understood. In this paper, we show that activated signal transducer and activator of transcription-3 (STAT3), an intracellular mediator of the effects of CNTF and other neurotrophic cytokines, acts locally in axons of motoneurons to modify the tubulin cytoskeleton. Specifically, we show that activated STAT3 interacted with stathmin and inhibited its microtubule-destabilizing activity. Thus, ectopic CNTF-mediated activation of STAT3 restored axon elongation and maintenance in motoneurons from progressive motor neuronopathy mutant mice, a mouse model of motoneuron disease. This mechanism could also be relevant for other neurodegenerative diseases and provide a target for new therapies for axonal degeneration.}, language = {en} } @article{MajounieRentonMoketal.2012, author = {Majounie, Elisa and Renton, Alan E. and Mok, Kin and Dopper, Elise G. P. and Waite, Adrian and Rollinson, Sara and Chi{\`o}, Adriano and Restagno, Gabriella and Nicolaou, Nayia and Simon-Sanchez, Javier and van Swieten, John C. and Abramzon, Yevgeniya and Johnson, Janel O. and Sendtner, Michael and Pamphlett, Roger and Orrell, Richard W. and Mead, Simon and Sidle, Katie C. and Houlden, Henry and Rohrer, Jonathan D. and Morrison, Karen E. and Pall, Hardev and Talbot, Kevin and Ansorge, Olaf and Hernandez, Dena G. and Arepalli, Sampath and Sabatelli, Mario and Mora, Gabriele and Corbo, Massimo and Giannini, Fabio and Calvo, Andrea and Englund, Elisabet and Borghero, Giuseppe and Floris, Gian Luca and Remes, Anne M. and Laaksovirta, Hannu and McCluskey, Leo and Trojanowski, John Q. and Van Deerlin, Vivianna M. and Schellenberg, Gerard D. and Nalls, Michael A. and Drory, Vivian E. and Lu, Chin-Song and Yeh, Tu-Hsueh and Ishiura, Hiroyuki and Takahashi, Yuji and Tsuji, Shoji and Le Ber, Isabelle and Brice, Alexis and Drepper, Carsten and Williams, Nigel and Kirby, Janine and Shaw, Pamela and Hardy, John and Tienari, Pentti J. and Heutink, Peter and Morris, Huw R. and Pickering-Brown, Stuart and Traynor, Bryan J.}, title = {Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study}, series = {The Lancet Neurology}, volume = {11}, journal = {The Lancet Neurology}, doi = {10.1016/S1474-4422(12)70043-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-154644}, pages = {323 -- 330}, year = {2012}, abstract = {Background We aimed to accurately estimate the frequency of a hexanucleotide repeat expansion in C9orf72 that has been associated with a large proportion of cases of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Methods We screened 4448 patients diagnosed with ALS (El Escorial criteria) and 1425 patients with FTD (Lund-Manchester criteria) from 17 regions worldwide for the GGGGCC hexanucleotide expansion using a repeat-primed PCR assay. We assessed familial disease status on the basis of self-reported family history of similar neurodegenerative diseases at the time of sample collection. We compared haplotype data for 262 patients carrying the expansion with the known Finnish founder risk haplotype across the chromosomal locus. We calculated age-related penetrance using the Kaplan-Meier method with data for 603 individuals with the expansion. Findings In patients with sporadic ALS, we identified the repeat expansion in 236 (7·0\%) of 3377 white individuals from the USA, Europe, and Australia, two (4·1\%) of 49 black individuals from the USA, and six (8·3\%) of 72 Hispanic individuals from the USA. The mutation was present in 217 (39·3\%) of 552 white individuals with familial ALS from Europe and the USA. 59 (6·0\%) of 981 white Europeans with sporadic FTD had the mutation, as did 99 (24·8\%) of 400 white Europeans with familial FTD. Data for other ethnic groups were sparse, but we identified one Asian patient with familial ALS (from 20 assessed) and two with familial FTD (from three assessed) who carried the mutation. The mutation was not carried by the three Native Americans or 360 patients from Asia or the Pacific Islands with sporadic ALS who were tested, or by 41 Asian patients with sporadic FTD. All patients with the repeat expansion had (partly or fully) the founder haplotype, suggesting a one-off expansion occurring about 1500 years ago. The pathogenic expansion was non-penetrant in individuals younger than 35 years, 50\% penetrant by 58 years, and almost fully penetrant by 80 years. Interpretation A common Mendelian genetic lesion in C9orf72 is implicated in many cases of sporadic and familial ALS and FTD. Testing for this pathogenic expansion should be considered in the management and genetic counselling of patients with these fatal neurodegenerative diseases.}, language = {en} } @article{SimonRauskolbGunnersenetal.2015, author = {Simon, Christian M. and Rauskolb, Stefanie and Gunnersen, Jennifer M. and Holtmann, Bettina and Drepper, Carsten and Dombert, Benjamin and Braga, Massimiliano and Wiese, Stefan and Jablonka, Sibylle and P{\"u}hringer, Dirk and Zielasek, J{\"u}rgen and Hoeflich, Andreas and Silani, Vincenzo and Wolf, Eckhard and Kneitz, Susanne and Sommer, Claudia and Toyka, Klaus V. and Sendtner, Michael}, title = {Dysregulated IGFBP5 expression causes axon degeneration and motoneuron loss in diabetic neuropathy}, series = {Acta Neuropathologica}, volume = {130}, journal = {Acta Neuropathologica}, doi = {10.1007/s00401-015-1446-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-154569}, pages = {373 -- 387}, year = {2015}, abstract = {Diabetic neuropathy (DNP), afflicting sensory and motor nerve fibers, is a major complication in diabetes.The underlying cellular mechanisms of axon degeneration are poorly understood. IGFBP5, an inhibitory binding protein for insulin-like growth factor 1 (IGF1) is highly up-regulated in nerve biopsies of patients with DNP. We investigated the pathogenic relevance of this finding in transgenic mice overexpressing IGFBP5 in motor axons and sensory nerve fibers. These mice develop motor axonopathy and sensory deficits similar to those seen in DNP. Motor axon degeneration was also observed in mice in which the IGF1 receptor(IGF1R) was conditionally depleted in motoneurons, indicating that reduced activity of IGF1 on IGF1R in motoneurons is responsible for the observed effect. These data provide evidence that elevated expression of IGFBP5 in diabetic nerves reduces the availability of IGF1 for IGF1R on motor axons, thus leading to progressive neurodegeneration. Inhibition of IGFBP5 could thus offer novel treatment strategies for DNP.}, language = {en} } @article{BrieseSaalAppenzelleretal.2015, author = {Briese, Michael and Saal, Lena and Appenzeller, Silke and Moradi, Mehri and Baluapuri, Apoorva and Sendtner, Michael}, title = {Whole transcriptome profiling reveals the RNA content of motor axons}, series = {Nucleic Acids Research}, journal = {Nucleic Acids Research}, doi = {10.1093/nar/gkv1027}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-126800}, year = {2015}, abstract = {Most RNAs within polarized cells such as neurons are sorted subcellularly in a coordinated manner. Despite advances in the development of methods for profiling polyadenylated RNAs from small amounts of input RNA, techniques for profiling coding and non-coding RNAs simultaneously are not well established. Here, we optimized a transcriptome profiling method based on double-random priming and applied it to serially diluted total RNA down to 10 pg. Read counts of expressed genes were robustly correlated between replicates, indicating that the method is both reproducible and scalable. Our transcriptome profiling method detected both coding and long non-coding RNAs sized >300 bases. Compared to total RNAseq using a conventional approach our protocol detected 70\% more genes due to reduced capture of ribosomal RNAs. We used our method to analyze the RNA composition of compartmentalized motoneurons. The somatodendritic compartment was enriched for transcripts with post-synaptic functions as well as for certain nuclear non-coding RNAs such as 7SK. In axons, transcripts related to translation were enriched including the cytoplasmic non-coding RNA 7SL. Our profiling method can be applied to a wide range of investigations including perturbations of subcellular transcriptomes in neurodegenerative diseases and investigations of microdissected tissue samples such as anatomically defined fiber tracts.}, language = {en} } @article{HornburgDrepperButteretal.2014, author = {Hornburg, Daniel and Drepper, Carsten and Butter, Falk and Meissner, Felix and Sendtner, Michael and Mann, Matthias}, title = {Deep Proteomic Evaluation of Primary and Cell Line Motoneuron Disease Models Delineates Major Differences in Neuronal Characteristics*}, series = {Molecular \& Cellular Proteomics : MCP}, volume = {13}, journal = {Molecular \& Cellular Proteomics : MCP}, number = {12}, issn = {1535-9484}, doi = {10.1074/mcp.M113.037291}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-120954}, pages = {3410-20}, year = {2014}, abstract = {The fatal neurodegenerative disorders amyotrophic lateral sclerosis and spinal muscular atrophy are, respectively, the most common motoneuron disease and genetic cause of infant death. Various in vitro model systems have been established to investigate motoneuron disease mechanisms, in particular immortalized cell lines and primary neurons. Using quantitative mass-spectrometry-based proteomics, we compared the proteomes of primary motoneurons to motoneuron-like cell lines NSC-34 and N2a, as well as to non-neuronal control cells, at a depth of 10,000 proteins. We used this resource to evaluate the suitability of murine in vitro model systems for cell biological and biochemical analysis of motoneuron disease mechanisms. Individual protein and pathway analysis indicated substantial differences between motoneuron-like cell lines and primary motoneurons, especially for proteins involved in differentiation, cytoskeleton, and receptor signaling, whereas common metabolic pathways were more similar. The proteins associated with amyotrophic lateral sclerosis also showed distinct differences between cell lines and primary motoneurons, providing a molecular basis for understanding fundamental alterations between cell lines and neurons with respect to neuronal pathways with relevance for disease mechanisms. Our study provides a proteomics resource for motoneuron research and presents a paradigm of how mass-spectrometry-based proteomics can be used to evaluate disease model systems.}, language = {en} } @article{GoetzSendtner2014, author = {G{\"o}tz, Rudolf and Sendtner, Michael}, title = {Cooperation of Tyrosine Kinase Receptor TrkB and Epidermal Growth Factor Receptor Signaling Enhances Migration and Dispersal of Lung Tumor Cells}, series = {PLoS ONE}, volume = {9}, journal = {PLoS ONE}, number = {6}, issn = {1932-6203}, doi = {10.1371/journal.pone.0100944}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-119578}, pages = {e100944}, year = {2014}, abstract = {TrkB mediates the effects of brain-derived neurotrophic factor (BDNF) in neuronal and nonnneuronal cells. Based on recent reports that TrkB can also be transactivated through epidermal growth-factor receptor (EGFR) signaling and thus regulates migration of early neurons, we investigated the role of TrkB in migration of lung tumor cells. Early metastasis remains a major challenge in the clinical management of non-small cell lung cancer (NSCLC). TrkB receptor signaling is associated with metastasis and poor patient prognosis in NSCLC. Expression of this receptor in A549 cells and in another adenocarcinoma cell line, NCI-H441, promoted enhanced migratory capacity in wound healing assays in the presence of the TrkB ligand BDNF. Furthermore, TrkB expression in A549 cells potentiated the stimulatory effect of EGF in wound healing and in Boyden chamber migration experiments. Consistent with a potential loss of cell polarity upon TrkB expression, cell dispersal and de-clustering was induced in A549 cells independently of exogeneous BDNF. Morphological transformation involved extensive cytoskeletal changes, reduced E-cadherin expression and suppression of E-cadherin expression on the cell surface in TrkB expressing tumor cells. This function depended on MEK and Akt kinase activity but was independent of Src. These data indicate that TrkB expression in lung adenoma cells is an early step in tumor cell dissemination, and thus could represent a target for therapy development.}, language = {en} } @article{DombertSivadasanSimonetal.2014, author = {Dombert, Benjamin and Sivadasan, Rajeeve and Simon, Christian M. and Jablonka, Sibylle and Sendtner, Michael}, title = {Presynaptic Localization of Smn and hnRNP R in Axon Terminals of Embryonic and Postnatal Mouse Motoneurons}, doi = {10.1371/journal.pone.0110846}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-113655}, year = {2014}, abstract = {Spinal muscular atrophy (SMA) is caused by deficiency of the ubiquitously expressed survival motoneuron (SMN) protein. SMN is crucial component of a complex for the assembly of spliceosomal small nuclear ribonucleoprotein (snRNP) particles. Other cellular functions of SMN are less characterized so far. SMA predominantly affects lower motoneurons, but the cellular basis for this relative specificity is still unknown. In contrast to nonneuronal cells where the protein is mainly localized in perinuclear regions and the nucleus, Smn is also present in dendrites, axons and axonal growth cones of isolated motoneurons in vitro. However, this distribution has not been shown in vivo and it is not clear whether Smn and hnRNP R are also present in presynaptic axon terminals of motoneurons in postnatal mice. Smn also associates with components not included in the classical SMN complex like RNA-binding proteins FUS, TDP43, HuD and hnRNP R which are involved in RNA processing, subcellular localization and translation. We show here that Smn and hnRNP R are present in presynaptic compartments at neuromuscular endplates of embryonic and postnatal mice. Smn and hnRNP R are localized in close proximity to each other in axons and axon terminals both in vitro and in vivo. We also provide new evidence for a direct interaction of Smn and hnRNP R in vitro and in vivo, particularly in the cytosol of motoneurons. These data point to functions of SMN beyond snRNP assembly which could be crucial for recruitment and transport of RNA particles into axons and axon terminals, a mechanism which may contribute to SMA pathogenesis.}, language = {en} } @article{DohrmannEdgarSendtneretal.1986, author = {Dohrmann, Ulrike and Edgar, David and Sendtner, Michael and Thoenen, Hans}, title = {Muscle-derived factors that support survival and promote fiber outgrowth from embryonic chick spinal motor neurons in culture}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-72862}, year = {1986}, abstract = {The purpose of the experiments reported is to provide an unambiguous demonstration that embryonie skeletal muscle contains factors that act directly on embryonie spinal motor neurons both to support their survival and to stimulate the outgrowth of neurites. Cells of lumbar and brachial ventral spinal cords from 6-day-old chick embryos were separated by centrifugation in a two-step metrizamide gradient, and a motor neuron enriched fraction was obtained. Motor neurons were identified by retrogradely labeling with rhodamine isothiocyanate, and were enriched fourfold in the motor neuron fraction relative to unfractionated cells. In culture, the isolated motor neurons died within 3-4 days unless they were supplemented with embryonie chick skeletal muscle extract. Two functionally distinct entities separable by ammonium sulfate precipitation were responsible for the effects of muscle extracts on motor neurons. The 0-25\% ammonium sulfate precipitate contained molecules that alone bad no effect on neuronal survival but when bound to polyornithine-coated culture substrata, stimulated neurite outgrowth and potentiated the survival activity present in muscle. Most of this activity was due to a laminin-like molecule being immunoprecipitated with antisera against laminin, and immunoblotting demonstrated the presence of both the A and B chains of laminin. A long-term survival activity resided in the 25-70\% ammonium sulfate fraction, and its apparent total and specific activities were strongly dependent on the culture substrate. In contrast to the motor neurons, the cells from the other metrizamide fraction (including neuronal cells) could be kept in culture for a prolonged time without addition of exogenous factor(s).}, subject = {Nervenzelle}, language = {en} } @article{SendtnerDittrichHughesetal.1994, author = {Sendtner, Michael and Dittrich, F. and Hughes, R. A. and Thoenen, H.}, title = {Actions of CNTF and neurotrophins on degenerating motoneurons : preclinical studies and clinical implications}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-62939}, year = {1994}, abstract = {Spinal motoneurons innervating skeletal muscle were amongst the first neurons shown to require the presence of their target cells to develop appropriately. Isolated embryonie chick and rat motoneurons have been used to identify neurotrophic factors and cytokines capable of supporting the survival of developing motoneurons. Such factors include ciliary neurotrophic factor (CNTF), which is present physiologically in high amounts in myelinating Schwann cells of peripheral nerves, and brain-derived neurotrophic factor (BDNF) which is synthesized in skeletal muscle and, after peripheral nerve lesion. in Schwann cells. These factors have been further analyzed for their physiological significance in maintaining motoneuron function in vivo, and for their potential therapeutic usefulness in degenerative motoneuron disease. Both CNTF and BDNF are capable of rescuing injured facial motoneurons in newbom rats. Furthermore, CNTF prolongs survival and improves motor function of pmn mice, an animal model for degenerative motoneuron disease, by preventing degeneration of motoneuron axons and somata. Thus treatment of human motoneuron disease with neurotrophic factors should be possible, provided that rational means for application of these factors can be established considering also the appearance of potential side effects.}, subject = {Neurobiologie}, language = {en} } @techreport{LuettickenWegenkaYuanetal.1994, author = {L{\"u}tticken, Claudia and Wegenka, Ursula M. and Yuan, Juping and Buschmann, Jan and Schindler, Chris and Ziemiecki, Andrew and Harpur, Alisa G. and Wilks, Andrew F. and Yasukawa, Kiyoshi and Taga, Tetsuya and Kishimoto, Tadamitsu and Barbieri, Giovanna and Sendtner, Michael and Pellegrini, Sandra and Heinrich, Peter C. and Horn, Friedemann}, title = {Association of transcription factor APRF and protein kinase JAK1 with the IL-6 signal transducer gp130}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-42577}, year = {1994}, abstract = {Interleukin-6, leukemia inhibitory factor, oncostatin M. Interleukin-11, and cilialy neurotrophic factor bind to receptor complexes that share the signal transducer gp130. Upon binding, the ligands rapidly activate DNA binding of acute-phase response factor (APRF), a protein antigenicaly relaled to the p91 subunit of the interferon-stimulated gene factor-(ISGF-3a). These cytokines caused tyrosine phosphorylation of APRF and ISGF-3a p91. Protein kinases of the Jak family were also rapidly tyrosine phosphorylated, and both APRF and Jak1 associated with gp130. These data indicate that Jak family protein kinases may participate in IL-6 signaling and that APRF may be activated in a complex with gp130.}, language = {en} } @article{SendtnerThoenen1994, author = {Sendtner, Michael and Thoenen, Hans}, title = {Oxidative stress and motorneuron disease}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-42684}, year = {1994}, abstract = {Transgenic mice carrying mutated Cu/Zn superoxide dismutase genes provide insights into the pathogenesis of human motorneuron diseases and may be useful as models in the development and testing of therapies.}, language = {en} } @article{SendtnerThoenenHoltmannetal.1992, author = {Sendtner, Michael and Thoenen, Hans and Holtmann, B. and Kohlbeck, R. and Barde, Y.-A.}, title = {Brain-derived neurotrophic factor prevents the death of motoneurons in newborn rats after nerve section}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-42673}, year = {1992}, abstract = {Motoneurons innervating the skeletal musculature were among the first neurons shown to require the presence of their target cells to develop appropriatelyl,2. But the characterization of molecules allowing motoneuron survival has been difficult. Ciliary neurotrophic factor prevents the death of motoneurons3-6, but its gene is not expressed during development7. Although the presence of a neurotrophin receptor on developing motoneurons8-1O has suggested a role for neurotrophins, none could be shown to promote motoneuron survival in vitro3. We report here that brainderived neurotrophic factor can prevent the death of axotomized motoneurons in newborn rats, suggesting a role for this neurotrophin for motoneuron survival in vivo.}, language = {en} } @article{HughesLillienRaffetal.1988, author = {Hughes, Simon M. and Lillien, Laura E. and Raff, Martin C. and Rohrer, Hermann and Sendtner, Michael}, title = {Ciliary neurotrophic factor induces type-2 astrocyte differentiation in culture}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-42660}, year = {1988}, abstract = {We have been studying a population of bipotential glial progenitor cells in the perinatal rat optic nerve and brain in an attempt to understand how cells choose between alternative fates in the developing mammalian central nervous system (CNS). This cell population gives rise initially to oligodendrocytes and then to type-2 astrocytes1 both of which apparently collaborate in sheathing axons in the CNS2,3. In vitro studies suggest that oligodendrocyte differentiation is the constitutive pathway of development for the oligodendrocyte-type-2-astrocyte (O-2A) progenitor cell4,5, whereas type-2 astrocyte differentiation depends on a specific inducing protein6. This protein is present in the developing optic nerve when type-2 astrocytes are differentiating and can induce 0-2A progenitor cells in vitro to express glial fibrillary acidic protein (GFAP)6, a marker of astrocyte differentiation7. Here we show that the type-2-astrocyte-inducing protein is similar or identical to ciliary neutrotrophic factor (CNTF)8,9, which promotes the survival of some types of peripheral neurons in vitro8, including ciliary ganglion neurons8,10. This suggests that CNTF, in addition to its effect on neurons, may be responsible for triggering type-2 astrocyte differentiation in the developing CNS.}, language = {en} } @article{SendtnerThoenenHughes1993, author = {Sendtner, Michael and Thoenen, Hans and Hughes, R. A.}, title = {Members of several gene families influence survival of rat motoneurons in vitro and in vivo}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-42652}, year = {1993}, abstract = {The survival and functional maintenance of spinal motoneurons, both during the period of developmental cell death and in adulthood, have been shown to be dependent on trophic factors. In vitro experiments have previously been used to identify several survival factors for motoneurons, including CNTF, UF, and members of the neurotrophin, FGF, and IGF gene families. Some of these factors have also been shown to be active in vivo, either on chick motoneurons during embryonic development or on lesioned facial and spinal motoneurons of the newborn rat. Here we demonstrate that lesioned newborn rat facial motoneurons can be rescued by NT-4/5, IGF-I, and UF. Furthermore, in contrast to chick motoneurons, the survival of isolated embryonic rat motoneurons can be maintained by the neurotrophins BDNF, NT-3, and NT-4/5. IGF-I and FGF-5 were also active in this system, each supporting more than 50\% of the originally plated neurons. The responsiveness of motoneurons to multiple factors in vitro and in vivo suggests that motoneuron survival and function are regulated by the coordinated actions of members of different gene families.}, language = {en} } @article{BarresSchmidSendtneretal.1993, author = {Barres, B. A. and Schmid, R. and Sendtner, Michael and Raff, Martin C.}, title = {Multiple extracellular signals are required for long-term oligodendrocyte survival}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-42644}, year = {1993}, abstract = {We showed previously that oligodendrocytes and their precursors require continuous signalling by protein trophic factors to avoid programmed cell death in culture. Here we show that three classes of such trophic factors promote oligodendrocyte survival in vitro: (1) insulin and insulin-like growth factors (IGFs), (2) neurotrophins, particularly neurotrophin-3 (NT -3), and (3) ciliary-neurotrophic factor (CNTF), leukemia inhibitory factor (LIF) and interleukin 6 (IL-6). A single factor, or combinations of factors within the same class, promote only short-term survival of oligodendrocytes and their precursors, while combinations of factors from different classes promote survival additively. Long-term survival of oligodendrocytes in vitro requires at least one factor from each class, suggesting that multiple signals may be required for long-term oligodendrocyte survival in vivo. We also show that CNTF promotes oligodendrocyte survival in vivo, that platelet-derived growth factor (PDGF) can promote the survival of oligodendrocyte precursors in vitro by acting on a novel, very high affinity PDGF receptor, and that, in addition to its effect on survival, NT-3 is a potent mitogen for oligodendrocyte precursor cells.}, language = {en} } @article{DittrichThoenenSendtner1994, author = {Dittrich, Falk and Thoenen, Hans and Sendtner, Michael}, title = {Ciliary neurotrophic factor: pharmacokinetics and acute-phase response in rat}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-42639}, year = {1994}, abstract = {No abstract available}, language = {en} } @article{KaupmannSendtnerStoecklietal.1991, author = {Kaupmann, Klemens and Sendtner, Michael and St{\"o}ckli, Kurt A. and Jockusch, Harald}, title = {The gene of ciliary neurotrophic factor (cntf) maps to murine chromosome 19 and its expression is not affected in the hereditary motoneuron disease 'wobbler' of the mouse}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-42626}, year = {1991}, abstract = {The cDNA for ciliary neurotrophic factor (CNTF), a polypeptide involved in the survival of motoneurons in mammals, has recently been cloned (St{\"o}ckli et al., Nature, 342, 920 - 923, 1989; Lin et al. Science, 246, 1023 - 1025, 1989). We have now localized the corresponding gene Cntf to chromosome 19 in the mouse, using an interspecific cross between Mus spretus and Mus musculus domesticus. The latter was carrying the gene wobbler (wr) for spinal muscular atrophy. DNA was prepared from backcross individuals and typed for the segregation of species-specific Cntf restriction fragments in relation to DNA markers of known chromosomal location. The M.spretus allele of Cntf cosegregated with chromosome 19 markers and mapped closely to Ly-1, to a region of mouse chromosome 19 with conserved synteny to human chromosome 11q. Cntf is not linked to wr, and the expression of CNTF mRNA and protein appears close to normal in facial and sciatic nerves, of affected (wr/wr) mice, suggesting that motoneuron degeneration of wobbler mice has its origin in defects other than reduced CNTF expression.}, language = {en} } @article{SendtnerGnahnWakadeetal.1988, author = {Sendtner, Michael and Gnahn, H. and Wakade, A. and Thoenen, Hans}, title = {Is activation of the Na\(^+\)K\(^+\) pump necessary for NGF-mediated neuronal survival?}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-42610}, year = {1988}, abstract = {The ability of nerve growth factor to cause rapid activation of the Na+K+ pump of its responsive cells was examined by measuring the uptake of 86Rb+. A significant increase in 86Rb+ uptake in Ea chick dorsal root ganglion sensory neurons after NGF treatment was seen only if the cells had been damaged during the preparation procedure. Such damaged cells could not survive in culture in the presence of NGF, and undamaged cells that did survive in response to NGF exhibited no increased 86Rb+ uptake rate. Furthermore, cultured calf adrenal medullary cells did not show an increase in 86Rb+ uptake after treatment with NGF, although these cells respond to NGF with an increased synthesis of catecholaminergic enzymes. These results are incompatible with the hypothesis that the mechanism of action of NGF that promotes neuronal survival and enzyme induction results from an initial stimulation of the Na+K+ pump.}, language = {en} } @article{LillienSendtnerRaff1990, author = {Lillien, Laura E. and Sendtner, Michael and Raff, Martin C.}, title = {Extracellular Matrix-associated molecules collaborate with ciliary neurotrophic factor to induce type-2 astrocyte development}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-42602}, year = {1990}, abstract = {0-2A progenitor cells give rise to both oligodendrocytes and type-2 astrocytes in vitro. Whereas oligodendrocyte differentiation occurs constitutively, type-2 astrocyte differentiation requires extracellular signals, one of which is thought to be ciliary neurotrophic factor (CNTF). CNTF, however, is insufficient by itself to induce the development of stable type-2 astrocytes. In this report we show the following: (a) that molecules associated with the extracellular matrix (ECM) cooperate with CNTF to induce stable type-2 astrocyte differentiation in serumfree cultures. The combination of CNTF and the ECM-associated molecules thus mimics the effect of FCS, which has been shown previously to induce stable type-2 astrocyte differentiation in vitro. (b) Both the ECM-associated molecules and CNTF act directly on 0-2A progenitor cells and can induce them to differentiate prematurely into type-2 astrocytes. (c) ECM-associated molecules also inhibit oligodendrocyte differentiation, even in the absence of CNTF, but this inhibition is not sufficient on its own to induce type-2 astrocyte differentiation. (d) Whereas the effect of ECM on oligodendrocyte differentiation is mimicked by basic fibroblast growth factor (bFGF), the effect of ECM on type-2 astrocyte differentiation is not. (e) The ECM-associated molecules that are responsible for inhibitin~ oligodendrocyte differentiation and for cooperating with CNTF to induce type-2 astrocyte differentiation are made by non-glial cells in vitro. (f) Molecules that have these activities and bind to ECM are present in the optic nerve at the time type-2 astrocytes are thought to be developing.}, language = {en} } @article{SendtnerStoeckliCarrolletal.1992, author = {Sendtner, Michael and St{\"o}ckli, Kurt A. and Carroll, Patrick and Kreutzberg, Georg W. and Thoenen, Hans}, title = {More on motor neurons}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-42598}, year = {1992}, abstract = {No abstract available}, language = {en} } @article{HughesSendtnerGoldfarbetal.1993, author = {Hughes, Richard A. and Sendtner, Michael and Goldfarb, Mitchell and Lindholm, Dan and Thoenen, Hans}, title = {Evidence that fibroblast growth factor 5 is a major muscle-derived survival factor for cultured spinal motoneurons}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-42588}, year = {1993}, abstract = {We examined the potential role of fibroblast growth factor 5 (FGF-5) as a target-derived trophic factor for spinal motoneurons. Northern analysis of total RNA from rat skeletal muscle revealed an FGF-5 mRNA transcript both during the period of embryonic motoneuron death and in the adult. Recombinant human FGF-5 supported the survival of highly enriched cultures of embryonic chick motoneurons. Significant proportions of the motoneuron survival activity of rat skeletal muscle extracts could be immunoprecipitated using an antiserum to FGF-5. The immunoprecipitable activity was present in soluble and matrix-bound forms in embryonic muscle, but bound exclusively to the extracellular matrix in adult muscle. These results, along with the secretory nature of FGF-5, suggest that FGF-5 may act as a target-derived trophic factor for motoneurons.}, language = {en} } @article{SendtnerStoeckliThoenenetal.1992, author = {Sendtner, Michael and St{\"o}ckli, Kurt A. and Thoenen, Hans and Schmalbruch, H. and Carroll, P. and Kreutzberg, Georg W.}, title = {Ciliary neurotrophic factor prevents the degeneration of motor neurons in mouse mutant progressive motor neuronopathy}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-42563}, year = {1992}, abstract = {CILIARY neurotrophic factor (CNTF) supports the survival of embryonic motor neurons in vitro and in vivo and prevents lesion-mediated degeneration of rat motor neuron~ during early post-natal stages. Here we report that CNTF greatly reduces all the functional and morphological changes in pmnlpmn mice5, an autosomal recessive mutant leading to progressive caudo-cranial motor neuron degeneration. The first manifestations of progressive motor neuronopathy in homozygous pmnl pmn mice become apparent in the hind limbs at the end of the third post-natal week and all the mice die up to 6 or 7 weeks after birth from respiratory paralysis. Treatment with CNTF prolongs- survival- and greatly Impoves motor function of these mice. Moreover, morphological manifestations, such as loss of motor axons in the phrenic nerve and degeneration of facial motor neurons, were greatly reduced by CNTF, although the treatment did not start until the first symptoms of the disease had already become apparent and substantial degenerative changes were already present. The protective and restorative effects of CNTF in this mouse mutant give new perspectives for the treatment of human degenerative motor neuron diseases with CNTF.}, language = {en} } @article{SendtnerCarrollHoltmannetal.1994, author = {Sendtner, Michael and Carroll, P. and Holtmann, B and Hughes, R. A. and Thoenen, H.}, title = {Ciliary Neurotrophic Factor}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-42545}, year = {1994}, abstract = {No abstract available}, language = {en} } @article{SaadatSendtnerRohrer1989, author = {Saadat, S. and Sendtner, Michael and Rohrer, H.}, title = {Ciliary neurotrophic factor induces cholinergic differentiation of rat sympathetic neurons in culture}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-32677}, year = {1989}, abstract = {Ciliary neurotrophic factor (CNTF) influences the levels of choline acetyltransferase (ChAT) and tyrosine hydroxylase (TH) in cultures of dissociated sYmpathetic neurons from newborn rats. In the presence of CNTF both the total and specific activity of ChAT was increased 7 d after culture by 15- and 18-fold, respectively, as compared to cultures kept in the absence of CNTF. Between 3 and 21 d in culture in the presence of CNTF . the total ChAT activity increased by a factor of >100. Immunotitration demonstrated that the elevated ChAT levels were due to an increased number of enzyme molecules. In contrast to the increase in ChAT levels, the total and specific activity levels' of TH were decreased by 42 and 36 \%, respectively, after 7 d in culture. Half-maximal effects for both ChAT increase and TH decrease were obtained at CNTF concentrations of rvO.6 ng and maximal levels were reached at I ng of CNTF per milliliter of medium. The effect of CNTF on TH and ChAT levels were seen in serum-containing medium as well as in serum-free medium. CNTF was shown to have only a small effect on the long-term s.urviVal of rat sympathetic neurons. We therefore concluded that the effects of CNTF on ChAT and TH are not due to selective survival of cells that acquire cholinergic traits in vitro, but are rather due to the induction of cholinergic differentiation of noradrenergic sympathetic neurons.}, language = {en} } @incollection{ThoenenHughesSendtner1993, author = {Thoenen, Hans and Hughes, Richard A. and Sendtner, Michael}, title = {Towards a comprehensive understanding of the trophic support of motoneurons}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-31117}, publisher = {Universit{\"a}t W{\"u}rzburg}, year = {1993}, abstract = {Motoneurons played an essential role in establishing the concept of target-mediated support of innervating neurons. However, it took several decades until molecules were identined which trophically support motoneurons in vitro and in vivo. The most potent molecule identined so far is ciliary neurotrophic factor (CNTF). It is expressed as a cytosolic molecule in myelinating Schwann cells rather than in skeletal muscle in the postnatal period and therefore does not qualify as a target-derived neurotrophic factor regulating motoneuron survival during embryonic development. However, the inactivation of CNTF by gene targeting experiments results in progressive atrophy and degeneration of motoneurons, demonstrating that CNTF plays an essential role as a maintenance factor for motoneurons postnatally. Secretory molecules which are expressed in skeletal muscle during embryonic development and which support motoneurons in culture and partially also in vivo include members of the NGF gene family (BDNF, NT-3, NT-4/S) , FGF-S, IGF-I, and UF. The evaluation of the physiological importance of these molecules is under investigation.}, language = {en} } @misc{SendtnerArakawaStoecklietal.1991, author = {Sendtner, Michael and Arakawa, Yoshihiro and St{\"o}ckli, Kurt A. and Kreutzberg, Georg W. and Thoenen, Hans}, title = {Effect of ciliary neurotrophic factor (CNTF) on motoneuron survival}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-33048}, year = {1991}, abstract = {We have demonstrated that the extensive degeneration of motoneurons in the rat facial nucleus after transection of the facial nerve in newborn rats can be prevented by local ciliary neurotrophic factor (CNTF) administration. CNTF differs distinctly from known neurotrophic molecules such as NGF, BDNF and NT-3 in both its molecular characteristics (CNTF is a cytosolic rather than a secretory molecule) and its broad spectrum of biological activities. CNTF is expressed selectively by Schwann cells and astrocytes of the peripheral and central nervous system, respectively, but not by target tissues of the great variety of CNTF -responsive neurons. CNTF mRNA is not detectable by Northern blot or PCR analysis during embryonic development and immediately after birth. However, during the second post-natal week, a more than 30-fold increase in CNTF mRNA and pro tein occurs in the sciatic nerve. Since the period of low CNTF levels in peripheral nerves coincides with that of high vulnerability of motoneurons (i.e. axonallesion results in degeneration of motoneuron cell bodies), insufficient availability of CNTF may be the reason for the rate of lesioninduced cell death of early post-natal motoneurons. Highly enriched embryonic chick motoneurons in culture are supported at survival rates higher than 60\% by CNTF, even in single cell cultures, indicating that CNTF acts directly on motoneurons. In contrast to CNTF, the members of the neurotrophin gene family (NGF, BDNF and NT-3) do not support the survival of motoneurons in culture. However, aFGF and bFGF show distinct survival activities which are additive to those of CNTF, resulting in the survival of virtually all motoneurons cultured in the presence of CNTF and bFGF.}, language = {en} } @article{ErnsbergerSendtnerRohrer1989, author = {Ernsberger, Uwe and Sendtner, Michael and Rohrer, Hermann}, title = {Proliferation and differentiation of embryonic chick sympathetic neurons: Effects of ciliary neurotropic factor.}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-31721}, year = {1989}, abstract = {At early developmental stages (embryonic day 7, E7), chick paravertebral sympathetic ganglia contain a cell population that divides in culture while expressing various neuronal properties. In an attempt to identify factors that control neuronal proliferation, we found that ciliary neurotrophic factor (CNTF) specifically inhibits the proliferation of those cells expressing neuronal markers. In addition, CNTF affects the differentiation of sympathetic ganglion cells by inducing the expression of vasoactive intestinal peptide immunoreactivity (VIP-IR). After 1 day in culture, tyrosine hydroxylase immunoreactivity (TH-I R) was expressed by about 86\% of the cells whereas VIP-IR was virtually absent. In the presence of CNTF, 50\%-60\% of the cells expressed VIP-IR after 4 days in culture; however, none of the cells expressed VIP-IR in the absence of CNTF. These results, and the demonstration of cells that express both VIP and TH-IR, indicate that VIP is induced in cells that initially express tyrosine hydroxylase. The findings suggest a potential role for CNTF as a factor affecting the proliferation and differentiation of developing sympathetic neurons.}, language = {en} } @article{Sendtner1993, author = {Sendtner, Michael}, title = {Neurotrophic factors and their action on motoneuron survival: Implications for neuromuscular disorders}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-31149}, year = {1993}, abstract = {Motoneuron diseases represent a m\&jor challenge to modern neurology, yet their clinical manifestations ware first described more than hundred years ago, and despite many studies the etiology of these diseases ramd,ns obscure with no effective treatments having been reported. Although progress has been made in establishing genetic linkage in the rare inherited for.ms of these diseases such as familial amyotrophic lateral scleriosisl , spinal mDscular atrophy and X-linked bulbo-spinal-mDscular atrophy, this new information has not yet affected therapeutic techniques. During the last few years several important steps have been taken concerning the physiological mechanisms involved in motoneuron survival during development, after lesion and in animal models of degenerative diseases, the molecular clOning of several new neurotrophic factors (brain-derived neurotrophic factor (BDNP), neurotrophin-3 and-4 (NT-3 and NT-4) and ciliary neurotrophic factor (CNTP)); the identification of a gene family of receptor molecules for same of these factors, progress in the understanding of the effects of polypeptide growth factors on muscle cell differentiation, neuronal sprouting (insulin-like growth factor-I and -11 (IGF-I and IGF-II), and in vitro motoneuronal survival (CNTF, IGF-I and -II and basic FGF). These findings have raised new hopes in that they could lead to a better understanding of the pathophysiological processes underlying these diseases, and that the pharmacological use of same of these newly characterized neurotrophic factors could present new possibilities for the treatment of these diseases.}, language = {en} } @article{CarrollSendtnerMeyeretal.1993, author = {Carroll, Patrick and Sendtner, Michael and Meyer, Michael and Thoenen, Hans}, title = {Rat ciliary neurothrophic factor (CNTF): gene structure and regulation of mRNA levels in glial cell cultures.}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-31763}, year = {1993}, abstract = {The structure of the rat ciliary neurotrophic factor (CNTF) gene and the regulation ofCNTF mRNA levels in cultured glial cells were investigated. The rat mRNA is encoded by a simple two-exon transcription unit. Sequence analysis of the region upstream of the transcription start-site did not reveal a typical TATA-box consensus sequence. Low levels of CNTF mRNA were detected in cultured Schwann cells, and CNTF mRNA was not increased by a variety of treatments. Three-week-old astrocyteenriched cell cultures from new-born rat brain contained easily detectable CNTF mRNA. In astrocyte-enriched cultures, upregulation of CNTF mRNA levels was observed after treatment with IFN-gamma. CNTF mRNA levels were down-regulated in these cells by treatments that elevate intracellular cyclic AMP and by members of the fibroblast growth factor (FGF) family. The implications of these results for potential in vivo functions of CNTF are discussed.}, language = {en} } @article{ArakawaSendtnerThoenen1990, author = {Arakawa, Yoshihiro and Sendtner, Michael and Thoenen, Hans}, title = {Survival effect of ciliary neurotrophic factor (CNTF) on chick embryonic motoneurons in culture: comparison with other neurotrophic factors and cytokines}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-31718}, year = {1990}, abstract = {No abstract available}, language = {en} } @techreport{SendtnerKreutzbergJennekens1992, author = {Sendtner, Michael and Kreutzberg, Georg W. and Jennekens, Frans G.}, title = {Workshop on trophic factors in the peripheral nervous system. Capri, October 1991.}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-31451}, year = {1992}, abstract = {No abstract available}, language = {en} } @misc{ThoenenHughesSendtner1993, author = {Thoenen, Hans and Hughes, Richard A. and Sendtner, Michael}, title = {Trophic support of motoneurons: physiological, pathophysiological, and therapeutic implications.}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-31746}, year = {1993}, abstract = {No abstract available}, language = {en} } @article{SendtnerStoeckliThoenen1992, author = {Sendtner, Michael and St{\"o}ckli, K. A. and Thoenen, Hans}, title = {Synthesis and localization of ciliary neurotrophic factor in the sciatic nerve of the adult rat after lesion and during regeneration}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-31738}, year = {1992}, abstract = {Ciliary neurotrophic factor (CNTF) is expressed in high quantities in Schwann cells of peripheral nerves during postnatal development of the rat. The absence of a hydrophobic leader sequence and the immunohistochemical localization of CNTF within the cytoplasm of these cells indicate that the factor might not be available to responsive neurons under physiological conditions. However, CNTF supports the survival of a variety of embryonic neurons, including spinal motoneurons in culture. Moreover we have recently demonstrated that the exogenous application of CNTF protein to the lesioned facial nerve of the newborn rat rescued these motoneurons from cell death. These results indicate that CNTF might indeed play a major role in assisting the survival of lesioned neurons in the adult peripheral nervous system. Here we demonstrate that the CNTF mRNA and protein levels and the manner in which they are regulated are compatible with such a function in lesioned peripheral neurons. In particular, immunohistochemical analysis showed significant quantities of CNTF at extracellular sites after sciatic nerve lesion. Western blots and determination of CNTF biological activity of the same nerve segments indicate that extracellular CNTF seems to be biologically active. After nerve lesion CNTF mRNA levels were reduced to <5 \% in distal regions of the sciatic nerve whereas CNTF bioactivity decreased to only one third of the original before-lesion levels. A gradual reincrease in Schwann cells occurred concomitant with regeneration.}, language = {en} } @article{StoeckliLililienNaeherNoeetal.1991, author = {St{\"o}ckli, K. A. and Lililien, L. E. and N{\"a}her- No{\´e}, M. and Breitfeld, G. and Hughes, Richard A. and Raff, M. C. and Thoenen, Hans and Sendtner, Michael}, title = {Regional distribution, developmental changes, and cellular localization of CNTF-mRNA and protein in the rat brain}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-31172}, year = {1991}, abstract = {Ciliary neurotrophic factor (CNTF) is a potent survival molecule for a variety of embryonic neurons in culture. The developmental expression of CNTF occurs clearly after the time period of the physiological cell death of CNTF-responsive neurons. This, together with the sites of expression, excludes CNTF as a target-derived neuronal survival factor, at least in rodents. However, CNTF also participates in the induction of type 2 astrocyte differentiation in vitro. Here we demonstrate that the time course of the expression of CNTF-mRNA and protein in the rat optic nerve (as evaluated by quantitative Northern blot analysis and biological activity, respectively) is compatible with such a glial differentiation function of CNTF in vivo. We also show that the type 2 astrocyte-inducing- activity previously demonstrated in optic nerve extract can be precipitated by an antiserum against CNTF. Immunohistochemical analysis of astrocytes in vitro and in vivo demonstrates that the expression of CNTF is confined to a subpopulation of type 1 astrocytes. The olfactory bulb of adult rats has comparably high levels of CNTF to the optic nerve, and here again, CNTF-immunoreactivity is localized in a subpopulation of astrocytes. However, the postnatal expression of CNTF in the olfactory bulb occurs later than in the optic nerve. In other brain regions both CNTF-mRNA and protein levels are much lower.}, language = {en} } @article{MasuWolfHoltmannetal.1993, author = {Masu, Yasuo and Wolf, Eckhard and Holtmann, Bettina and Sendtner, Michael and Brem, Gottfried and Thoenen, Hans}, title = {Disruption of the CNTF gene results in motor neuron degeneration}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-33038}, year = {1993}, abstract = {CNTF is a cytosolic molecule expressed postnatally in myelinating Schwann cells and in a subpopulation of astrocytes. Although CNTF administration prevents lesion-mediated and genetically determined motor neuron degeneration, its physiological function remained elusive. Here it is reported that abolition of CNTF gene expression by homologous recombination results in a progressive atrophy and loss of motor neurons in adult mice, which is functionally reflected by a small but significant reduction in muscle strength.}, language = {en} } @article{MengSendtnerSmith1995, author = {Meng, Li and Sendtner, Michael and Smith, Austin}, title = {Essential function of LIF receptor in motor neurons}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-34219}, year = {1995}, abstract = {D EVELOPME'iT and maintenance of the mammalian nervous system is dependent upon neurotrophic cytokines. One class of neurotrophic factor acts through rcccptor complexes involving the lowaffinity leukaemia inhibitor y faclor receptor subunit (LlF-R). Members of this fa mily of cytokines, such as ciliary neurotrophic factor (CNTF) and leukaemia inhibitory factor (LIF), have profound effects on the survival and maintenance of motor neurons, Recently it was reported that mice lacking LlF-R die shortly after birth unlike mice lacking CNTF or LIF which are viable. Here we describe histopathological analyses of lifr mutants tha t reveal a loss > 35\% of facia l motor neurons, 40\% of spinal motor neurons and 50\% of neurons in the nucleus ambiguus. These findings point to the existence of a ligand for LIF-R tha t is required for the normal development of motor neurons in both brainstem nuclei and spinal cord.}, language = {en} } @article{StoeckliLottspeichSendtneretal.1989, author = {St{\"o}ckli, K. A. and Lottspeich, F. and Sendtner, Michael and Masiakowski, P. and Carroll, Patrick and G{\"o}tz, Rudolf and Lindholm, D. and Thoenen, Hans}, title = {Molecular cloning, expression and regional distribution of rat ciliary neurotrophic factor}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-34229}, year = {1989}, abstract = {CILIARY neurotrophic factor (CNTF) was originally characterized as a survival factor for chick ciliary neurons in vitro. More recently, it was shown to promote the survival of a variety of otherneuronal cell types and to affect the differentiation of E7 chick sympathetic neurons by inhibiting their proliferation and by inducing the expression of yasoactiYe intestinal peptide immunoreactiyity (VIP-IR). In cultures of dissociated sympathetic neurons from newborn rats, CNTF induces cholinergic differentiation as shown by increased levels of choline acetyltransferase (ChAT.}, language = {en} } @article{LillienSendtnerRohreretal.1988, author = {Lillien, Laura E. and Sendtner, Michael and Rohrer, Hermann and Hughes, Simon M. and Raff, Martin C.}, title = {Type-2 Astrocyte Development in Rat Brain Cultures is initiated by a CNTF-like protein produced by type-1 astrocytes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-31708}, year = {1988}, abstract = {No abstract available}, language = {en} } @article{BorasioJohnWittinghoferetal.1989, author = {Borasio, Gian Domenico and John, Jacob and Wittinghofer, Alfred and Barde, Yves-Alain and Sendtner, Michael and Heumann, Rolf}, title = {ras p21 protein promotes survival and fiber outgrowth of cultured embryonic neurons}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-32621}, year = {1989}, abstract = {Although evidence obtained with the PC12 cell line has suggested a role for the ras oncogene proteins in the signal transduction of nerve growth factor-mediated fiber outgrowth, little is known about the signal transduction mechanisms involved in the neuronal response to neurotrophic factors in nontransformed cells. We report here that the oncogene protein T24-ras, when introduced into the cytoplasm of freshly dissociated chick embryonic neurons, promotes the in vitro survival and neurite outgrowth of nerve growth factor-responsive dorsal rootganglion neurons, brain-derived neurotrophic factor-responsive nodose ganglion neurons, and ciliary neuronotrophic factor-responsive ciliary ganglion neurons. The proto-oncogene product c-Ha-ras also promotes neuronal survival, albeit less strongly. No effect could be observed with truncated counterparts of T24-ras and c-Ha-ras lacking the 23 C-terminal amino acids including the membrane-an-choring, palmityl-accepting cysteine. These results sug-gest a generalized involvement of ras or ras-like proteins in the intracellular signal transduction pathway for neurotrophic factors.}, language = {en} } @article{SendtnerKreutzbergThoenen1990, author = {Sendtner, Michael and Kreutzberg, Georg W. and Thoenen, Hans}, title = {Ciliary neurotrophic factor (CNTF) prevents the degeneration of motor neurons after axotomy}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-32637}, year = {1990}, abstract = {The period of natural cell death in the development of rodent motor neurons is followed by a period of sensitivity to axonal injury1-3. In the rat this early postnatal period of vulnerability coincides with that of very low ciliary neurotrophic factor (CNTF) levels in the sciatic nerve before CNTF increases to the high, adult levels4. The developmental time course of CNTF expression, its regional tissue distribution and its cytosolic localization (as suggested by its primary structure)4*5 favour a role for CNTF as a lesion factor rather than a target-derived neurotrophic molecule like nerve growth factor. Nevertheless CNTF exhibits neurotrophic activity in vitro on different populations of embryonic neurons6. To determine whether the vulnerability of motor neurons to axotomy in the early postnatal phase is due to insufficient availability of CNTF, we transected the axons of newborn rat motor neurons and demonstrated that iocal application of CNTF prevents the degeneration of the corresponding cell bodies.}, language = {en} }