@article{GrobHeinigGruebeletal.2021, author = {Grob, Robin and Heinig, Niklas and Gr{\"u}bel, Kornelia and R{\"o}ssler, Wolfgang and Fleischmann, Pauline N.}, title = {Sex-specific and caste-specific brain adaptations related to spatial orientation in Cataglyphis ants}, series = {Journal of Comparative Neurology}, volume = {529}, journal = {Journal of Comparative Neurology}, number = {18}, doi = {10.1002/cne.25221}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-257299}, pages = {3882-3892}, year = {2021}, abstract = {Cataglyphis desert ants are charismatic central place foragers. After long-ranging foraging trips, individual workers navigate back to their nest relying mostly on visual cues. The reproductive caste faces other orientation challenges, i.e. mate finding and colony foundation. Here we compare brain structures involved in spatial orientation of Cataglyphis nodus males, gynes, and foragers by quantifying relative neuropil volumes associated with two visual pathways, and numbers and volumes of antennal lobe (AL) olfactory glomeruli. Furthermore, we determined absolute numbers of synaptic complexes in visual and olfactory regions of the mushroom bodies (MB) and a major relay station of the sky-compass pathway to the central complex (CX). Both female castes possess enlarged brain centers for sensory integration, learning, and memory, reflected in voluminous MBs containing about twice the numbers of synaptic complexes compared with males. Overall, male brains are smaller compared with both female castes, but the relative volumes of the optic lobes and CX are enlarged indicating the importance of visual guidance during innate behaviors. Male ALs contain greatly enlarged glomeruli, presumably involved in sex-pheromone detection. Adaptations at both the neuropil and synaptic levels clearly reflect differences in sex-specific and caste-specific demands for sensory processing and behavioral plasticity underlying spatial orientation.}, language = {en} } @article{HabensteinAminiGruebeletal.2020, author = {Habenstein, Jens and Amini, Emad and Gr{\"u}bel, Kornelia and el Jundi, Basil and R{\"o}ssler, Wolfgang}, title = {The brain of Cataglyphis ants: Neuronal organization and visual projections}, series = {Journal of Comparative Neurology}, volume = {528}, journal = {Journal of Comparative Neurology}, number = {18}, doi = {10.1002/cne.24934}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-218212}, pages = {3479 -- 3506}, year = {2020}, abstract = {Cataglyphis ants are known for their outstanding navigational abilities. They return to their inconspicuous nest after far-reaching foraging trips using path integration, and whenever available, learn and memorize visual features of panoramic sceneries. To achieve this, the ants combine directional visual information from celestial cues and panoramic scenes with distance information from an intrinsic odometer. The largely vision-based navigation in Cataglyphis requires sophisticated neuronal networks to process the broad repertoire of visual stimuli. Although Cataglyphis ants have been subjected to many neuroethological studies, little is known about the general neuronal organization of their central brain and the visual pathways beyond major circuits. Here, we provide a comprehensive, three-dimensional neuronal map of synapse-rich neuropils in the brain of Cataglyphis nodus including major connecting fiber systems. In addition, we examined neuronal tracts underlying the processing of visual information in more detail. This study revealed a total of 33 brain neuropils and 30 neuronal fiber tracts including six distinct tracts between the optic lobes and the cerebrum. We also discuss the importance of comparative studies on insect brain architecture for a profound understanding of neuronal networks and their function.}, language = {en} } @article{RoesslerSpaetheGroh2017, author = {R{\"o}ssler, Wolfgang and Spaethe, Johannes and Groh, Claudia}, title = {Pitfalls of using confocal-microscopy based automated quantification of synaptic complexes in honeybee mushroom bodies (response to Peng and Yang 2016)}, series = {Scientific Reports}, volume = {7}, journal = {Scientific Reports}, number = {9786}, doi = {10.1038/s41598-017-09967-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170451}, year = {2017}, abstract = {A recent study by Peng and Yang in Scientific Reports using confocal-microscopy based automated quantification of anti-synapsin labeled microglomeruli in the mushroom bodies of honeybee brains reports potentially incorrect numbers of microglomerular densities. Whereas several previous studies using visually supervised or automated counts from confocal images and analyses of serial 3D electron-microscopy data reported consistent numbers of synaptic complexes per volume, Peng and Yang revealed extremely low numbers differing by a factor of 18 or more from those obtained in visually supervised counts, and by a factor 22-180 from numbers in two other studies using automated counts. This extreme discrepancy is especially disturbing as close comparison of raw confocal images of anti-synapsin labeled whole-mount brain preparations are highly similar across these studies. We conclude that these discrepancies may reside in potential misapplication of confocal imaging followed by erroneous use of automated image analysis software. Consequently, the reported microglomerular densities during maturation and after manipulation by insecticides require validation by application of appropriate confocal imaging methods and analyses tools that rely on skilled observers. We suggest several improvements towards more reliable or standardized automated or semi-automated synapse counts in whole mount preparations of insect brains.}, language = {en} } @article{SteijvenSpaetheSteffanDewenteretal.2017, author = {Steijven, Karin and Spaethe, Johannes and Steffan-Dewenter, Ingolf and H{\"a}rtel, Stephan}, title = {Learning performance and brain structure of artificially-reared honey bees fed with different quantities of food}, series = {PeerJ}, volume = {5}, journal = {PeerJ}, number = {e3858}, doi = {10.7717/peerj.3858}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170137}, year = {2017}, abstract = {Background Artificial rearing of honey bee larvae is an established method which enables to fully standardize the rearing environment and to manipulate the supplied diet to the brood. However, there are no studies which compare learning performance or neuroanatomic differences of artificially-reared (in-lab) bees in comparison with their in-hive reared counterparts. Methods Here we tested how different quantities of food during larval development affect body size, brain morphology and learning ability of adult honey bees. We used in-lab rearing to be able to manipulate the total quantity of food consumed during larval development. After hatching, a subset of the bees was taken for which we made 3D reconstructions of the brains using confocal laser-scanning microscopy. Learning ability and memory formation of the remaining bees was tested in a differential olfactory conditioning experiment. Finally, we evaluated how bees reared with different quantities of artificial diet compared to in-hive reared bees. Results Thorax and head size of in-lab reared honey bees, when fed the standard diet of 160 µl or less, were slightly smaller than hive bees. The brain structure analyses showed that artificially reared bees had smaller mushroom body (MB) lateral calyces than their in-hive counterparts, independently of the quantity of food they received. However, they showed the same total brain size and the same associative learning ability as in-hive reared bees. In terms of mid-term memory, but not early long-term memory, they performed even better than the in-hive control. Discussion We have demonstrated that bees that are reared artificially (according to the Aupinel protocol) and kept in lab-conditions perform the same or even better than their in-hive sisters in an olfactory conditioning experiment even though their lateral calyces were consistently smaller at emergence. The applied combination of experimental manipulation during the larval phase plus subsequent behavioral and neuro-anatomic analyses is a powerful tool for basic and applied honey bee research.}, language = {en} } @article{HuserRohwedderApostolopoulouetal.2012, author = {Huser, Annina and Rohwedder, Astrid and Apostolopoulou, Anthi A. and Widmann, Annekathrin and Pfitzenmaier, Johanna E. and Maiolo, Elena M. and Selcho, Mareike and Pauls, Dennis and von Essen, Alina and Gupta, Tript and Sprecher, Simon G. and Birman, Serge and Riemensperger, Thomas and Stocker, Reinhard F. and Thum, Andreas S.}, title = {The Serotonergic Central Nervous System of the Drosophila Larva: Anatomy and Behavioral Function}, series = {PLoS One}, volume = {7}, journal = {PLoS One}, number = {10}, doi = {10.1371/journal.pone.0047518}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-130437}, pages = {e47518}, year = {2012}, abstract = {The Drosophila larva has turned into a particularly simple model system for studying the neuronal basis of innate behaviors and higher brain functions. Neuronal networks involved in olfaction, gustation, vision and learning and memory have been described during the last decade, often up to the single-cell level. Thus, most of these sensory networks are substantially defined, from the sensory level up to third-order neurons. This is especially true for the olfactory system of the larva. Given the wealth of genetic tools in Drosophila it is now possible to address the question how modulatory systems interfere with sensory systems and affect learning and memory. Here we focus on the serotonergic system that was shown to be involved in mammalian and insect sensory perception as well as learning and memory. Larval studies suggested that the serotonergic system is involved in the modulation of olfaction, feeding, vision and heart rate regulation. In a dual anatomical and behavioral approach we describe the basic anatomy of the larval serotonergic system, down to the single-cell level. In parallel, by expressing apoptosis-inducing genes during embryonic and larval development, we ablate most of the serotonergic neurons within the larval central nervous system. When testing these animals for naive odor, sugar, salt and light perception, no profound phenotype was detectable; even appetitive and aversive learning was normal. Our results provide the first comprehensive description of the neuronal network of the larval serotonergic system. Moreover, they suggest that serotonin per se is not necessary for any of the behaviors tested. However, our data do not exclude that this system may modulate or fine-tune a wide set of behaviors, similar to its reported function in other insect species or in mammals. Based on our observations and the availability of a wide variety of genetic tools, this issue can now be addressed.}, language = {en} } @article{RoesslerBrill2013, author = {R{\"o}ssler, Wolfgang and Brill, Martin F.}, title = {Parallel processing in the honeybee olfactory pathway: structure, function, and evolution}, series = {Journal of Comparative Physiology A}, volume = {199}, journal = {Journal of Comparative Physiology A}, doi = {10.1007/s00359-013-0821-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-132548}, pages = {981-996}, year = {2013}, abstract = {Animals face highly complex and dynamic olfactory stimuli in their natural environments, which require fast and reliable olfactory processing. Parallel processing is a common principle of sensory systems supporting this task, for example in visual and auditory systems, but its role in olfaction remained unclear. Studies in the honeybee focused on a dual olfactory pathway. Two sets of projection neurons connect glomeruli in two antennal-lobe hemilobes via lateral and medial tracts in opposite sequence with the mushroom bodies and lateral horn. Comparative studies suggest that this dual-tract circuit represents a unique adaptation in Hymenoptera. Imaging studies indicate that glomeruli in both hemilobes receive redundant sensory input. Recent simultaneous multi-unit recordings from projection neurons of both tracts revealed widely overlapping response profiles strongly indicating parallel olfactory processing. Whereas lateral-tract neurons respond fast with broad (generalistic) profiles, medial-tract neurons are odorant specific and respond slower. In analogy to "what-" and "where" subsystems in visual pathways, this suggests two parallel olfactory subsystems providing "what-" (quality) and "when" (temporal) information. Temporal response properties may support across-tract coincidence coding in higher centers. Parallel olfactory processing likely enhances perception of complex odorant mixtures to decode the diverse and dynamic olfactory world of a social insect.}, language = {en} }