@article{MamontovaTrifaultBotenetal.2021, author = {Mamontova, Victoria and Trifault, Barbara and Boten, Lea and Burger, Kaspar}, title = {Commuting to work: Nucleolar long non-coding RNA control ribosome biogenesis from near and far}, series = {Non-Coding RNA}, volume = {7}, journal = {Non-Coding RNA}, number = {3}, issn = {2311-553X}, doi = {10.3390/ncrna7030042}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-242756}, year = {2021}, abstract = {Gene expression is an essential process for cellular growth, proliferation, and differentiation. The transcription of protein-coding genes and non-coding loci depends on RNA polymerases. Interestingly, numerous loci encode long non-coding (lnc)RNA transcripts that are transcribed by RNA polymerase II (RNAPII) and fine-tune the RNA metabolism. The nucleolus is a prime example of how different lncRNA species concomitantly regulate gene expression by facilitating the production and processing of ribosomal (r)RNA for ribosome biogenesis. Here, we summarise the current findings on how RNAPII influences nucleolar structure and function. We describe how RNAPII-dependent lncRNA can both promote nucleolar integrity and inhibit ribosomal (r)RNA synthesis by modulating the availability of rRNA synthesis factors in trans. Surprisingly, some lncRNA transcripts can directly originate from nucleolar loci and function in cis. The nucleolar intergenic spacer (IGS), for example, encodes nucleolar transcripts that counteract spurious rRNA synthesis in unperturbed cells. In response to DNA damage, RNAPII-dependent lncRNA originates directly at broken ribosomal (r)DNA loci and is processed into small ncRNA, possibly to modulate DNA repair. Thus, lncRNA-mediated regulation of nucleolar biology occurs by several modes of action and is more direct than anticipated, pointing to an intimate crosstalk of RNA metabolic events.}, language = {en} } @phdthesis{Hovhanyan2014, author = {Hovhanyan, Anna}, title = {Functional analyses of Mushroom body miniature (Mbm) in growth and proliferation of neural progenitor cells in the central brain of Drosophila melanogaster}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-91303}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Zellwachstum und Zellteilung stellen zwei miteinander verkn{\"u}pfte Prozesse dar, die dennoch grunds{\"a}tzlich voneinander zu unterscheiden sind. Die Wiederaufnahme der Proliferation von neuralen Vorl{\"a}uferzellen (Neuroblasten) im Zentralhirn von Drosophila nach der sp{\"a}t-embryonalen Ruhephase erfordert zun{\"a}chst Zellwachstum. Der Erhalt der regul{\"a}ren Zellgr{\"o}ße ist eine wichtige Voraussetzung f{\"u}r die kontinuierliche Proliferation der Neuroblasten {\"u}ber die gesamte larvale Entwicklungsphase. Neben extrinsischen Ern{\"a}hrungssignalen ist f{\"u}r das Zellwachstum eine kontinuierliche Versorgung mit funktionellen Ribosomen notwendig, damit die Proteinsynthese aufrechterhalten werden kann. Mutationen im mushroom body miniature (mbm) Gen wurden {\"u}ber einen genetischen Screen nach strukturellen Gehirnmutanten identifiziert. Der Schwerpunkt dieser Arbeit lag in der funktionellen Charakterisierung des Mbm Proteins als neues nukleol{\"a}res Protein und damit seiner m{\"o}glichen Beteiligung in der Ribosomenbiogenese. Der Vergleich der relativen Expressionslevel von Mbm und anderen nuklearen Proteinen in verschiedenen Zelltypen zeigte eine verst{\"a}rkte Expression von Mbm in der fibrill{\"a}ren Komponente des Nukleolus von Neuroblasten. Diese Beobachtung legte die Vermutung nahe, dass in Neuroblasten neben generell ben{\"o}tigten Faktoren der Ribosomenbiogenese auch Zelltyp-spezifische Faktoren existieren. Mutationen in mbm verursachen Proliferationsdefekte von Neuroblasten, wirken sich jedoch nicht auf deren Zellpolarit{\"a}t, die Orientierung der mitotischen Spindel oder die Asymmetrie der Zellteilung aus. Stattdessen wurde eine Reduktion der Zellgr{\"o}ße beobachtet, was im Einklang mit einer Beeintr{\"a}chtigung der Ribosomenbiogenese steht. Insbesondere f{\"u}hrt der Verlust der Mbm Funktion zu einer Retention der kleinen ribosomalen Untereinheit im Nukleolus, was eine verminderte Proteinsynthese zur Folge hat. Interessanterweise wurden St{\"o}rungen der Ribosomenbiogenese nur in den Neuroblasten beobachtet. Zudem ist Mbm offensichtlich nicht erforderlich, um Wachstum oder die Proliferation von Zellen der Fl{\"u}gelimginalscheibe und S2-Zellen zu steuern, was wiederum daf{\"u}r spricht, dass Mbm eine Neuroblasten-spezifische Funktion erf{\"u}llt. Dar{\"u}ber hinaus wurden die transkriptionelle Regulation des mbm-Gens und die funktionelle Bedeutung von posttranslationalen Modifikationen analysiert. Mbm Transkription wird von dMyc reguliert. Ein gemeinsames Merkmal von dMyc Zielgenen ist das Vorhandensein einer konservierten „E-Box"-Sequenz in deren Promotorregionen. In der Umgebung der mbm-Transkriptionsstartstelle befinden sich zwei „E-Box"-Motive. Mit Hilfe von Genreporteranalysen konnte nachgewiesen werden, dass nur eine von ihnen die dMyc-abh{\"a}ngige Transkription vermittelt. Die dMyc-abh{\"a}ngige Expression von Mbm konnte auch in Neuroblasten verifiziert werden. Auf posttranslationaler Ebene wird Mbm durch die Proteinkinase CK2 phosphoryliert. In der C-terminalen H{\"a}lfte des Mbm Proteins wurden in zwei Clustern mit einer Abfolge von sauren Aminos{\"a}uren sechs Serin- und Threoninreste als CK2- Phosphorylierungsstellen identifiziert. Eine Mutationsanalyse dieser Stellen best{\"a}tigte deren Bedeutung f{\"u}r die Mbm Funktion in vivo. Weiterhin ergaben sich Evidenzen, dass die Mbm-Lokalisierung durch die CK2-vermittelte Phosphorylierung gesteuert wird. Obwohl die genaue molekulare Funktion von Mbm in der Ribosomenbiogenese noch im Unklaren ist, unterstreichen die Ergebnisse dieser Studie die besondere Rolle von Mbm in der Ribosomenbiogenese von Neuroblasten um Zellwachstum und Proliferation zu regulieren.}, subject = {Taufliege}, language = {en} } @phdthesis{Schwarz2023, author = {Schwarz, Jessica Denise}, title = {Genome-wide reporter screens identify transcriptional regulators of ribosome biogenesis}, doi = {10.25972/OPUS-27901}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-279010}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Cellular growth and proliferation are among the most important processes for cells and organisms. One of the major determinants of these processes is the amount of proteins and consequently also the amount of ribosomes. Their synthesis involves several hundred proteins and four different ribosomal RNA species, is highly coordinated and very energy-demanding. However, the molecular mechanims of transcriptional regulation of the protein-coding genes involved, is only poorly understood in mammals. In this thesis, unbiased genome-wide knockout reporter screens were performed, aiming to identify previously unknown transcriptional regulators of ribosome biogenesis factors (RiBis), which are important for the assembly and maturation of ribosomes, and ribosomal proteins (RPs), which are ribosomal components themself. With that approach and follow-up (validation) experiments, ALDOA and RBM8A among others, could be identified as regulators of ribosome biogenesis. Depletion of the glycolytic enzyme ALDOA led to a downregulation of RiBi- and RPpromoter driven reporters on protein and transcript level, as well as to a downregulation of ribosome biogenesis gene transcripts and of mRNAs of other genes important for proliferation. Reducing the amount of the exon junction complex protein RBM8A, led to a more prominent downregulation of one of the fluorescent reporters, but this regulation was independent of the promoter driving the expression of the reporter. However, acute protein depletion experiments in combination with nascent RNA sequencing (4sU-Seq) revealed, that mainly cytosolic ribosomal proteins (CRPs) were downregulated upon acute RBM8A withdrawal. ChIP experiments showed RBM8A binding to promoters of RP genes, but also to other chromatin regions. Total POL II or elongating and initiating POL II levels were not altered upon acute RBM8A depletion. These data provide a starting point for further research on the mechanisms of transcriptional regulation of RP and RiBi genes in mammals.}, subject = {Ribosom}, language = {en} } @article{SchwarzLukassenBhandareetal., author = {Schwarz, Jessica Denise and Lukassen, S{\"o}ren and Bhandare, Pranjali and Eing, Lorenz and Snaebj{\"o}rnsson, Marteinn Thor and Garc{\´i}a, Yiliam Cruz and Kisker, Jan Philipp and Schulze, Almut and Wolf, Elmar}, title = {The glycolytic enzyme ALDOA and the exon junction complex protein RBM8A are regulators of ribosomal biogenesis}, series = {Frontiers in Cell and Developmental Biology}, volume = {10}, journal = {Frontiers in Cell and Developmental Biology}, issn = {2296-634X}, doi = {10.3389/fcell.2022.954358}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-290875}, abstract = {Cellular growth is a fundamental process of life and must be precisely controlled in multicellular organisms. Growth is crucially controlled by the number of functional ribosomes available in cells. The production of new ribosomes depends critically on the activity of RNA polymerase (RNAP) II in addition to the activity of RNAP I and III, which produce ribosomal RNAs. Indeed, the expression of both, ribosomal proteins and proteins required for ribosome assembly (ribosomal biogenesis factors), is considered rate-limiting for ribosome synthesis. Here, we used genetic screening to identify novel transcriptional regulators of cell growth genes by fusing promoters from a ribosomal protein gene (Rpl18) and from a ribosomal biogenesis factor (Fbl) with fluorescent protein genes (RFP, GFP) as reporters. Subsequently, both reporters were stably integrated into immortalized mouse fibroblasts, which were then transduced with a genome-wide sgRNA-CRISPR knockout library. Subsequently, cells with altered reporter activity were isolated by FACS and the causative sgRNAs were identified. Interestingly, we identified two novel regulators of growth genes. Firstly, the exon junction complex protein RBM8A controls transcript levels of the intronless reporters used here. By acute depletion of RBM8A protein using the auxin degron system combined with the genome-wide analysis of nascent transcription, we showed that RBM8A is an important global regulator of ribosomal protein transcripts. Secondly, we unexpectedly observed that the glycolytic enzyme aldolase A (ALDOA) regulates the expression of ribosomal biogenesis factors. Consistent with published observations that a fraction of this protein is located in the nucleus, this may be a mechanism linking transcription of growth genes to metabolic processes and possibly to metabolite availability.}, language = {en} }