@phdthesis{Schweizer2002, author = {Schweizer, Ulrich}, title = {Genetische Untersuchungen zur Rolle von Cytochrom C und Stat3 bei der Regulation des embryonalen Zelltods von Motoneuronen der Maus}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-3732}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2002}, abstract = {Genetische Inaktivierung des somatischen Cytochrom C Gens der Maus Cytochrom C wurde als ein Interaktionspartner im Apoptosom beschrieben. Ziel dieses Projektes war es, die Rolle von Cytochrom C bei der Apoptose von Nervenzellen in vivo durch genetische Inaktivierung in der Maus zu untersuchen. Die homozygote Deletion des Cytochrom C Gens f{\"u}hrt jedoch zu einem sehr fr{\"u}hen Entwicklungsdefekt: Schon am 8. Embryonaltag findet man nur noch Embryonen ohne erkennbare K{\"o}rperachse. Im weiteren wurden daher heterozygote Tiere untersucht, die in bestimmten Geweben, wie Gehirn und R{\"u}ckenmark, eine Reduktion der Menge von Cytochrom C aufweisen. Am ersten Tag nach der Geburt konnten keine Unterschiede zwischen Tieren mit einem oder zwei Cytochrom C Genen in Bezug die Anzahl von Motoneuronen gefunden werden. Auch nach perinataler Fazialisl{\"a}sion war die Rate des Zelltods bei Tieren mit heterozygoter Deletion des Cytochrom C Gens unver{\"a}ndert. In vitro zeigte sich jedoch eine erh{\"o}hte Resitenz von Motoneuronen gegen{\"u}ber Fas-induzierter Apoptose. Bei der Analyse der Apoptose von Thymozyten zeigte sich ein Trend, der eine kleine, aber reproduzierbare Verz{\"o}gerung einer sp{\"a}ten Zelltodphase nach UV-induzierter Apoptose nahelegt. Erste Experimente deuten außerdem auf einen Effekt der Cytochrom C Gendosis auf den Verlauf einer Experimentellen Autoimmunencephalitis (EAE) hin. Charakterisierung der NFL-Cre Maus Die zelltypspezifische Genablation mit dem Cre/loxP System umgeht einige der gr{\"o}ßten Probleme der klassischen Methode der Geninaktivierung in M{\"a}usen, indem nur in bestimmten Geweben oder Zelltypen, eventuell sogar nur ab einem bestimmten Zeitpunkt, ein Gen gezielt ausgeschaltet werden kann. Allerdings h{\"a}ngt das Cre/loxP System von der Verf{\"u}gbarkeit von brauchbaren Cre-transgenen Mauslinien mit entsprechenden Expressionsmustern und -kinetiken ab. Wir haben eine transgene Mauslinie etabliert und analysiert, die die Cre Rekombinase unter der Kontrolle des humanen Neurofilament-L Promotors exprimiert. Das Expressionsmuster von Cre wurde in mehreren Geweben mit RT-PCR und durch Verkreuzung mit einer Reportergenmaus untersucht. Im Gehirn wurden Cre exprimierende Zelltypen mit in-situ Hybridisierung, Immunhistochemie und wiederum mit Hilfe der Reportermaus identifiziert. Dabei zeigte sich eine spezifische Cre Expression in bestimmten Neuronpopulationen wie hippocampalen Pyramidenzellen und spinalen und cranialen Motoneuronen. Unsere NFL-Cre Maus besitzt einige Eigenschaften, die bisher publizierte Cre-Linien nicht aufweisen, so z.B.eine starke Cre Expression in hippocampalen Pyramidenzellen, aber nicht in K{\"o}rnerzellen des Gyrus dentatus; Expression in cortikalen Pyramidenzellen, aber keine Expression im Striatum; Expression in zerebell{\"a}ren Purkinje-, aber nicht K{\"o}rnerzellen; sowie die Expression in spinalen und cranialen Motoneuronen, aber nicht in angrenzenden Interneuronen. Die Rolle von Stat3 f{\"u}r das {\"U}berleben von Motoneuronen Die Mitglieder der CNTF/LIF/Cardiotrophin Genfamilie sind potente {\"U}berlebensfaktoren f{\"u}r embryonale und l{\"a}dierte Motoneurone sowohl in vitro als auch in vivo. Diese Faktoren binden an Rezeptorkomplexe, die gp130 und LIFR als signaltransduzierende Komponenten enthalten. Im Gegensatz zu den Rezeptoren f{\"u}r andere neurotrophe Faktoren, f{\"u}hrt die Aktivierung von gp130 und LIFR zur Phosphorylierung und Aktivierung des Transkriptionsfaktors Stat3. Es war aber zu Beginn dieser Arbeiten unklar, ob die Aktivierung von Stat3 f{\"u}r den {\"U}berlebenseffekt der neuropoietischen Zytokine notwendig ist. Um diese Frage zu beantworten, wurde Stat3 in Motoneuronen mit Hilfe des Cre/loxP Systems konditional inaktiviert. Stat3 ist nicht f{\"u}r das {\"U}berleben embryonaler Motoneurone essentiell, obwohl man in vitro eine Verschiebung der Dosis-Wirkungskurve f{\"u}r CNTF findet. In vivo hingegen kann kein erh{\"o}hter Zelltod von Motoneuronen nachgewiesen werden. Im Gegensatz dazu, kommt es bei adulten Tieren mit Inaktivierung von Stat3 in Motoneuronen zu einem erh{\"o}hten Zelltod nach Fazialisl{\"a}sion. Diese Neurone k{\"o}nnen wiederum durch die Applikation neurotropher Faktoren, einschließlich CNTF, gerettet werden. Durch semiquantitative RT-PCR kann man zeigen, daß Stat3-regulierte Gene, deren Expression nach Nervenl{\"a}sion induziert wird, in Neuronen mit Inaktivierung von Stat3 weniger stark exprimiert werden. Zu diesen Genen geh{\"o}ren Reg-2, ein Mitogen f{\"u}r Schwannzellen, das von regenerierenden Neuronen exprimiert wird, und Bcl-xL, ein Gen, welches direkt in die Apoptoseregulation eingreift. Diese Daten zeigen, daß Stat3 Aktivierung eine essentielle Rolle f{\"u}r das {\"U}berleben nach L{\"a}sion von postnatalen Motoneuronen spielt, aber nicht w{\"a}hrend der Embryonalentwicklung. Das bedeutet, daß die Signalwege ein und desselben neurotrophen Faktors sich w{\"a}hrend der Entwicklung und reifung des Organismus ver{\"a}ndern k{\"o}nnen.}, subject = {Cytochrom c}, language = {de} } @phdthesis{Tschaepe2002, author = {Tsch{\"a}pe, Jakob-Andreas}, title = {Molekulare und funktionelle Analyse der Drosophila-Mutante l{\"o}chrig}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-2963}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2002}, abstract = {Neurodegenerative Erkrankungen des Menschen sind eines der Hauptfelder molekularer neurobiologischer Grundlagenforschung. Um generell molekulare, komplizierte Vorg{\"a}nge in vivo untersuchen zu k{\"o}nnen, nutzt man seit geraumer Zeit Modellorganismen wie Caenorhabditis elegans oder Drosophila melanogaster. In der vorliegenden Arbeit wird die Drosophila-Neurodegenerationsmutante loe (l{\"o}chrig) beschrieben, die als Modell f{\"u}r die Rolle des Cholesterinhaushalts im Bezug auf Neurodegeneration herangezogen werden kann. Die Fliegen dieser Mutante zeigen stark progressive, altersabh{\"a}ngige Degeneration von Neuronen, dabei unterlaufen diese Nervenzellen einen nekrotischenZelltod. Verantwortlich f{\"u}r diese Mutation ist die Insertion eines P-Elementes in einem Intron des Drosophila-g-5'-AMP-aktivierten Proteinkinase- (AMPK)-Gens. Die verschiedenen Spleißprodukte des loe Gens kodieren f{\"u}r die regulatorische g-Untereinheit des AMPK-Komplexes, der , aktiviert durch 5'AMP, energieintensive Prozesse negativ reguliert. Die Spleißform loeI ist durch die P-Element-Insertion betroffen, Anteile des P-Elementes werden in das loeI-Transkript hineingespleißt. Eine neuronale Expression von loeI im loe-Hintergrund f{\"u}hrt zur Revertierung des loe-Ph{\"a}notypes. Mit der Expression anderer Spleißformen kann dieser Effekt nicht erzielt werden. Das LOE I-Protein birgt in seinem N-Terminus eine Reihe m{\"o}glicher Interaktionstellen mit anderen Proteinen, die den AMPK-Komplex in einen Kontext mit den Proteinen der APP (Amyloid Precursor Proteins) ?Familie stellen oder z. B. Interaktionen mit dem Cytoskelett herstellen k{\"o}nnen. Eine molekulare Interaktion mit NiPSNAP, einem Protein, dass vermutlich eine Rolle im Vesikelverkehr spielt, konnte nachgewiesen werden. Ein direktes humanes Homolog von LOE I ist nicht bekannt, wohlgleich es im Menschen drei AMPK-g-Untereinheiten gibt, von denen zwei {\"a}hnliche Funktionen {\"u}bernehmen k{\"o}nnten wie LOE I. Die loe-Mutante interagiert genetisch mit der Mutante clb ? columbus, die einen Defekt im Gen der HMG-CoA-Reduktase tr{\"a}gt. Dieses Emzym ist das Schl{\"u}sselenzym der Cholesterinbiosynthese. Die Art der Interaktion belegt eine negative Regulierung der HMG-CoA-Reduktase durch die AMPK. So schw{\"a}cht die clb-Mutation den neurodegenerativen loe-Ph{\"a}notyp ab, eine {\"U}berexpression von clb verst{\"a}rkt diesen. Eine Verminderung der Neurodegeneration kann auch mit Medikamenten erreicht werden: Statine, potente Hemmer der HMG-COA-Reduktase, reprimieren deutlich den loe-Ph{\"a}notyp. In loe ist der Cholesterinester-Spiegel auf 40\% abgesenkt. Eine weitere genetische Interaktion von loe konnte nachgewiesen werden: Die Mutante f{\"u}r das Drosophila-Homolog von APP (Appl) verst{\"a}rkt den neurodegenerativen Ph{\"a}notyp in loe stark, wogegen die Appl-Mutante selbst keine neurodegenerativen Defekte aufweist. Dar{\"u}berhinaus zeigt die Doppelmutante Defekte, die keine der Einzelmutanten aufweist: Sterilit{\"a}t oder eine extrem kurze Lebensdauer von nur 3-4 Tagen. Diese Interaktion ließ sich auf molekularer Ebene charakterisieren. Die proteolytische Prozessierung von APPL durch Sekretasen ist in loe alteriert. In der vorliegenden Arbeit konnte gezeigt werden, dass durch die loe-Mutation die b-Sekretase aus Vertebraten (BACE) und eine bisher noch nicht beschriebene endogene Sekretase aus Drosophila negativ beeiflusst werden. Ein AMPK-Komplex mit LOE I als g-Untereinheit scheint {\"u}ber den Cholesterinester-Spiegel die Aktivit{\"a}t einer speziellen Untergruppe der Sekretasen zu beeinflussen. Die Missfunktion dieser Sekretasen ist ein kritischer Punkt in der Pathogenese der Alzheimer-Krankheit. Die loe-Mutation wirft neues Licht auf die bekannten Verbindungen zwischen Cholesterin-Stoffwechsel, Vesikelverkehr und Prozessierung von APP(L). Mit den großen M{\"o}glichkeiten, die die Drosophila-Genetik bietet, stellt diese neue Mutante ein weiteres Werkzeug zur Charakterisierung von Therapie-Ans{\"a}tzen f{\"u}r die Alzheimer-Kankheit dar. Die vorliegende Arbeit belegt um ein weiteres Mal, dass Drosophila ein potentes Modellsystem zur Untersuchung humaner, neurodegenerativer Erkrankungen wie Chorea Huntington, Parkinson oder der Alzheimer Krankheit ist.}, subject = {Taufliege}, language = {de} }