@article{ParthoChenBrauckhoffetal.2011, author = {Partho, Halder and Chen, Yi-chun and Brauckhoff, Janine and Hofbauer, Alois and Dabauvalle, Marie-Christine and Lewandrowski, Urs and Winkler, Christiane and Sickmann, Albert and Buchner, Erich}, title = {Identification of Eps15 as Antigen Recognized by the Monoclonal Antibodies aa2 and ab52 of the Wuerzburg Hybridoma Library against Drosophila Brain}, series = {PLoS One}, volume = {6}, journal = {PLoS One}, number = {12}, doi = {10.1371/journal.pone.0029352}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-137957}, pages = {e29352}, year = {2011}, abstract = {The Wuerzburg Hybridoma Library against the Drosophila brain represents a collection of around 200 monoclonal antibodies that bind to specific structures in the Drosophila brain. Here we describe the immunohistochemical staining patterns, the Western blot signals of one- and two-dimensional electrophoretic separation, and the mass spectrometric characterization of the target protein candidates recognized by the monoclonal antibodies aa2 and ab52 from the library. Analysis of a mutant of a candidate gene identified the Drosophila homolog of the Epidermal growth factor receptor Pathway Substrate clone 15 (Eps15) as the antigen for these two antibodies.}, language = {en} } @article{LinderHirmerGaletal.2014, author = {Linder, Bastian and Hirmer, Anja and Gal, Andreas and R{\"u}ther, Klaus and Bolz, Hanno J{\"o}rn and Winkler, Christoph and Laggerbauer, Bernhard and Fischer, Utz}, title = {Identification of a PRPF4 Loss-of-Function Variant That Abrogates U4/U6.U5 Tri-snRNP Integration and Is Associated with Retinitis Pigmentosa}, doi = {10.1371/journal.pone.0111754}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-113663}, year = {2014}, abstract = {Pre-mRNA splicing by the spliceosome is an essential step in the maturation of nearly all human mRNAs. Mutations in six spliceosomal proteins, PRPF3, PRPF4, PRPF6, PRPF8, PRPF31 and SNRNP200, cause retinitis pigmentosa (RP), a disease characterized by progressive photoreceptor degeneration. All splicing factors linked to RP are constituents of the U4/U6.U5 tri-snRNP subunit of the spliceosome, suggesting that the compromised function of this particle may lead to RP. Here, we report the identification of the p.R192H variant of the tri-snRNP factor PRPF4 in a patient with RP. The mutation affects a highly conserved arginine residue that is crucial for PRPF4 function. Introduction of a corresponding mutation into the zebrafish homolog of PRPF4 resulted in a complete loss of function in vivo. A series of biochemical experiments suggested that p.R192H disrupts the binding interface between PRPF4 and its interactor PRPF3. This interferes with the ability of PRPF4 to integrate into the tri-snRNP, as shown in a human cell line and in zebrafish embryos. These data suggest that the p.R192H variant of PRPF4 represents a functional null allele. The resulting haploinsufficiency of PRPF4 compromises the function of the tri-snRNP, reinforcing the notion that this spliceosomal particle is of crucial importance in the physiology of the retina.}, language = {en} } @article{RudelPrustySiegletal.2014, author = {Rudel, Thomas and Prusty, Bhupesh K. and Siegl, Christine and Gulve, Nitish and Mori, Yasuko}, title = {GP96 Interacts with HHV-6 during Viral Entry and Directs It for Cellular Degradation}, doi = {10. 1371/journal.pone.0113962}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-111068}, year = {2014}, abstract = {CD46 and CD134 mediate attachment of Human Herpesvirus 6A (HHV-6A) and HHV-6B to host cell, respectively. But many cell types interfere with viral infection through rapid degradation of viral DNA. Hence, not all cells expressing these receptors are permissive to HHV-6 DNA replication and production of infective virions suggesting the involvement of additional factors that influence HHV-6 propagation. Here, we used a proteomics approach to identify other host cell proteins necessary for HHV-6 binding and entry. We found host cell chaperone protein GP96 to interact with HHV-6A and HHV-6B and to interfere with virus propagation within the host cell. In human peripheral blood mononuclear cells (PBMCs), GP96 is transported to the cell surface upon infection with HHV-6 and interacts with HHV-6A and -6B through its C-terminal end. Suppression of GP96 expression decreased initial viral binding but increased viral DNA replication. Transient expression of human GP96 allowed HHV-6 entry into CHO-K1 cells even in the absence of CD46. Thus, our results suggest an important role for GP96 during HHV-6 infection, which possibly supports the cellular degradation of the virus.}, language = {en} } @article{SalatWinklerUrlaubetal.2015, author = {Salat, Daniela and Winkler, Anja and Urlaub, Henning and Gessler, Manfred}, title = {Hey bHLH Proteins Interact with a FBXO45 Containing SCF Ubiquitin Ligase Complex and Induce Its Translocation into the Nucleus}, series = {PLoS One}, volume = {10}, journal = {PLoS One}, number = {6}, doi = {10.1371/journal.pone.0130288}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-125769}, pages = {e0130288}, year = {2015}, abstract = {The Hey protein family, comprising Hey1, Hey2 and HeyL in mammals, conveys Notch signals in many cell types. The helix-loop-helix (HLH) domain as well as the Orange domain, mediate homo- and heterodimerization of these transcription factors. Although distinct interaction partners have been identified so far, their physiological relevance for Hey functions is still largely unclear. Using a tandem affinity purification approach and mass spectrometry analysis we identified members of an ubiquitin E3-ligase complex consisting of FBXO45, PAM and SKP1 as novel Hey1 associated proteins. There is a direct interaction between Hey1 and FBXO45, whereas FBXO45 is needed to mediate indirect Hey1 binding to SKP1. Expression of Hey1 induces translocation of FBXO45 and PAM into the nucleus. Hey1 is a short-lived protein that is degraded by the proteasome, but there is no evidence for FBXO45-dependent ubiquitination of Hey1. On the contrary, Hey1 mediated nuclear translocation of FBXO45 and its associated ubiquitin ligase complex may extend its spectrum to additional nuclear targets triggering their ubiquitination. This suggests a novel mechanism of action for Hey bHLH factors.}, language = {en} }