@phdthesis{Nedvetsky2003, author = {Nedvetsky, Pavel I.}, title = {Regulation of the nitric oxide receptor, soluble guanylyl cyclase}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-7046}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2003}, abstract = {Soluble guanylyl cyclase (sGC) is the best established receptor for nitric oxide (NO) and regulates a great number of important physiological functions. Surprisingly, despite the wellappreciated roles of this enzyme in regulation of vascular tone, smooth muscle cell proliferation, platelet aggregation, renal sodium secretion, synaptic plasticity, and other functions, extremely little is known about the regulation of sGC activity and protein levels. To date, the only well-proven physiologically relevant sGC regulator is NO. In the present study, some additional possibilities for sGC regulation were shown. Firstly, we evaluated the ability of different NO donors to stimulate sGC. Significant differences in the sGC stimulation by SNP and DEA/NO were found. DEA/NO stimulated sGC much stronger than did SNP. Interestingly, no correlation between the sGC protein and maximal activity distribution was found in rat brain regions tested, suggesting the existence of some additional regulatory mechanisms for sGC. The failure of SNP to stimulate sGC maximally might be one of the reasons why the lack of correlation between the distribution of sGC activity and proteins in brain was not detected earlier. Prolonged exposure of endothelial cells to NO donors produced desensitization of the cGMP response. This desensitization cannot be explained by increased PDE activity, since PDE inhibitors were not able to prevent the NO donor-induced decrease of the maximal cGMP response in endothelial cells. The failure of SH-reducing agents to improve the cGMP response after its desensitization by NO suggests that a SH-independent mechanism mediates NO effects. Demonstration that the potency of the recently described activator of oxidized (heme-free) sGC, BAY58-2667, to stimulate sGC increases after prolonged exposure of the cells to an NO donor, DETA/NO, suggests that oxidation of heme may be a reason for NOinduced desensitization of sGC and decrease in sGC protein level. Indeed, the well-known heme-oxidizing agent ODQ produces a dramatic decrease in sGC protein levels in endothelial cells and BAY58-2667 prevents this effect. Although the mechanism of sGC activation and stabilization by BAY58-2667 is unknown, this substance is an interesting candidate to modulate sGC under conditions where sGC heme iron is oxidized. Very little is known about regulation of sGC by intracellular localization or translocation between different intracellular compartments. In the present study, an increase in sGC sensitivity to NO under membrane association was demonstrated. Treatment of isolated lung with VEGF markedly increased sGC in membrane fractions of endothelial cells. Failure of VEGF to stimulate sGC membrane association in cultured endothelial cells allows us to propose a complex mechanism of regulation of sGC membrane association and/or a transient character of sGC membrane attachment. A very likely mechanism for the attachment of sGC to membranes is via sGCinteracting proteins. These proteins may participate also in other aspects of sGC regulation. The role of the recently described sGC interaction partner, Hsp90, was investigated. Shortterm treatment of endothelial cells with an Hsp90 inhibitor does not affect NO donor or calcium ionophore-stimulated cGMP accumulation in the cells. However, inhibition of Hsp90 results in a rapid and dramatic decrease in sGC protein levels in endothelial cells. These effects were unrelated to changes in sGC transcription, since inhibition of transcription had much slower effect on sGC protein levels. In contrast, inhibitors of proteasomes abolished the reduction in sGC protein levels produced by an Hsp90 inhibitor, suggesting involvement of proteolytic degradation of sGC proteins during inhibition of Hsp90. All these data together suggest that Hsp90 is required to maintain mature sGC proteins. In conclusion, in the present study it was demonstrated that multiple mechanisms are involved in the regulation of sGC activity and its sensitivity to NO. Oxidation of sGC heme by NO seems to be one of the mechanisms for negative regulation of sGC in the presence of high or prolonged stimulation with NO. Another possible means of regulating sGC sensitivity to NO is via the intracellular translocation of the enzyme. It has been also demonstrated here that attachment of sGC to the membrane fraction results in an apparent increase in the enzyme sensitivity to NO. Additionally, Hsp90 was required to maintain sGC protein in endothelial and other cell types. However, we could not find any acute affect of Hsp90 on sGC activity, as reported recently. All these findings demonstrate that the regulation of sGC activity and protein level is a much more complex process than had been assumed earlier.}, subject = {Guanylatcyclase}, language = {en} } @phdthesis{Stuebs2004, author = {St{\"u}bs, Dorothee}, title = {Identifizierung und Regulation von k{\"a}lteinduzierbaren Faktoren aus B. bronchiseptica}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-12704}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2004}, abstract = {K{\"a}lteschockproteine werden in Bakterien, gleichermaßen wie die gut charakterisierten Hitzeschockproteine, bei hohen Temperaturschwankungen stark induziert und erm{\"o}glichen der Zelle durch unterschiedliche Funktionen ein Wachstum in der K{\"a}lte. In dieser Promotionsarbeit wurde begonnen, die K{\"a}lteschock-Antwort von Bakterien des Genus Bordetella zu charakterisieren. Sowohl B. bronchiseptica als auch B. pertussis codieren f{\"u}r f{\"u}nf K{\"a}lteschockproteine, die als CspA, CspB, CspC, CspD und CspE bezeichnet werden. Die f{\"u}nf Proteine weisen eine signifikante Homologie zum Haupt-K{\"a}lteschockprotein CspA aus E. coli auf. W{\"a}hrend in den Modellorganismen E. coli und B. subtilis mindestens vier (E. coli) bzw. alle drei (B. subtilis) csp-Gene deletiert sein m{\"u}ssen, um einen Wachstumsdefizit zu erkennen, gen{\"u}gt im Falle von B. bronchiseptica eine einzige Insertionsmutation im Gen cspB, um einen temperaturunabh{\"a}ngigen Wachstumsdefekt zu beobachten. Nach einem K{\"a}lteschock werden in B. bronchiseptica drei der f{\"u}nf csp-Gene, cspA, cspB und cspC, deutlich induziert. Betrachtet man das Expressionsmuster der f{\"u}nf csp-Gene unter verschiedenen Stressbedingungen, wie Zugabe von translationshemmenden Antibiotika, Hitzeschock oder osmotischer Stress, so l{\"a}sst sich ein komplexes Expressionsmuster aufzeichnen. Außerdem besitzen die drei k{\"a}lteinduzierbaren Gene cspA, cspB und cspC mehrere Transkriptionsstartpunkte, deren Transkriptmengen unter den verschiedenen Schockbedingungen stark variieren. Es stellte sich heraus, dass eine {\"U}berexpression von CspB aus B. bronchiseptica f{\"u}r die E. coli - Zelle toxisch ist, daher wurde das CspB-Protein als GST-Fusionsprotein exprimiert und {\"u}ber Glutathion-Sepharose aufgereinigt. Um eine potentielle Funktion von CspB in der Zelle zu untersuchen, wurden Filterbindeassays mit CspB::GST durchgef{\"u}hrt. Es wurde eine hochaffine, aber unspezifische Bindung an ssDNA festgestellt, was auf eine m{\"o}gliche Funktion von CspB als Chaperon hindeutet. Nach Synthese eines CspB-spezifischen Antik{\"o}rpers wurde die K{\"a}lteinduktion von CspB auch auf Proteinebene nachgewiesen. Durch 2D-Gelelektrophorese und massenspektrometrische Charakterisierung konnten 17 weitere k{\"a}lteinduzierbare Proteine aus B. bronchiseptica identifiziert werden. Darunter waren u. a. ein Chaperon mit {\"A}hnlichkeit zu GroES, ein Translationsinhibitor BB2940 und das CspB. Diese k{\"a}lteinduzierbaren Proteine {\"a}hneln den CIPs aus E. coli. Weiterhin konnten noch das UspA und mehrere am Metabolismus beteiligte Proteine als CIPs aus B. bronchiseptica identifiziert werden, was signifikante Unterschiede in Bezug auf die K{\"a}lteadaptation zwischen den beiden Organismen aufzeigt. Betrachtet man die Promotorbereiche aller identifizierten csp-Gene, so f{\"a}llt eine f{\"u}r diese Gene typische sehr lange 5'UTR auf. Innerhalb dieser upstream Region findet man in vier der f{\"u}nf csp-Gene einen 9 bp langen Consensus mit der Sequenz TCCTTGATT, der in nahezu gleichem Abstand vom postulierten Startcodon vorkommt. Diese identifizierte 9bp-box ist f{\"u}r eine effiziente Transkription in der K{\"a}lte jedoch nicht von Bedeutung. Auf posttranskriptioneller Ebene wird die lange 5'UTR f{\"u}r die Stabilisierung der cold-shock mRNA in der K{\"a}lte verantwortlich gemacht. Außerdem ist das Vorhandensein der kompletten 5'UTR essentiell f{\"u}r eine effiziente Translation bei niedriger Temperatur, wobei eine Mutation der 9bp-box einen geringen, aber signifikanten negativen Effekt auf die Translation aus{\"u}bt. Sechs Gene, der neu identifizierten CIPs, beinhalten ebenfalls eine 9bp-box in ihrer upstream Region. Interessanterweise werden zwei der f{\"u}nf csp-Gene, cspC und cspD, vom BvgAS Zweikomponentensystem, dem Haupttranskriptionsregulator der Virulenzgene im Genus Bordetella, reguliert. Die beiden Gene geh{\"o}ren zu den Bvg-negativ regulierten Genen, die in der Bvg-minus-Phase exprimiert werden. Weiterhin beeinflusst eine leichte {\"U}berexpression von CspB aus B. pertussis die Expression der Adenylatzyklase sowohl in B. pertussis, als auch in B. bronchiseptica negativ. Dieser f{\"u}r das CspB spezifische Effekt erinnert an das strukturell verwandte Tex-Protein (Fuchs et al, 1996; K{\"o}nig et al, 2002). Beide Proteine beeinflussen die Expression der Virulenzfaktoren negativ, wobei f{\"u}r CspB gezeigt werden konnte, dass es einen direkten Einfluss auf die verminderte cyaA-Expression auf Transkriptionsebene besitzt. Dies zeigt eine Verbindung der K{\"a}lteschockantwort mit dem Virulenz-Regulon der Bordetellen, deren Rolle im Infektionszyklus bislang ungekl{\"a}rt ist.}, subject = {Bordetella bronchiseptica}, language = {de} } @phdthesis{Fackler2014, author = {Fackler, Marc}, title = {Biochemical characterization of GAS2L3, a target gene of the DREAM complex}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-103394}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {GAS2L3 was identified recently as a target gene of the DREAM complex (Reichert et al., 2010; Wolter et al., 2012). It was shown that GAS2L3 is expressed in a cell cycle specific manner and that depletion of the protein leads to defects in cytokinesis and genomic instability (Wolter et al., 2012). Major aim of this thesis was, to further characterize the biochemical properties and physiological function of GAS2L3. By in vitro co-sedimentation and bundling assays, GAS2L3 was identified as a cytoskeleton associated protein which bundles, binds and crosslinks F-actin and MTs. GST pulldown assays and co-immunoprecipitation experiments revealed that GAS2L3 interacts in vitro and in vivo with the chromosomal passenger complex (CPC), a very important regulator of mitosis and cytokinesis, and that the interaction is mediated by the GAR domain of GAS2L3 and the C-terminal part of Borealin and the N-terminal part of Survivin. Kinase assays showed that GAS2L3 is not a substrate of the CPC but is strongly phosphorylated by CDK1 in vitro. Depletion of GAS2L3 by shRNA influenced protein stability and activity of the CPC. However pharmacological studies showed that the decreased CPC activity is not responsible for the observed cytokinesis defects upon GAS2L3 depletion. Immunofluorescence experiments revealed that GAS2L3 is localized to the constriction zone by the CPC in a GAR dependent manner and that the GAR domain is important for proper protein function. New interacting proteins of GAS2L3 were identified by stable isotope labelling by amino acids in cell culture (SILAC) in combination with tandem affinity purification and subsequent mass spectrometrical analysis. Co-immunoprecipitation experiments further confirmed the obtained mass spectrometrical data. To address the physiological function of GAS2L3 in vivo, a conditional and a non-conditional knockout mouse strain was established. The non-conditional mouse strain showed a highly increased mortality rate before weaning age probably due to heart failure. The physiological function of GAS2L3 in vivo as well as the exact reason for the observed heart phenotype is not known at the moment.}, subject = {Zellzyklus}, language = {en} } @phdthesis{Sibilski2014, author = {Sibilski, Claudia}, title = {Identification and characterization of the novel mKSR1 phosphorylation site Tyr728 and its role in MAPK signaling}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-114672}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {In mammals, KSR1 functions as an essential scaffold that coordinates the assembly of RAF/MEK/ERK complexes and regulates intracellular signal transduction upon extracellular stimulation. Aberrant activation of the equivalent MAPK signaling pathway has been implicated in multiple human cancers and some developmental disorders. The mechanism of KSR1 regulation is highly complex and involves several phosphorylation/dephosphorylation steps. In the present study, a number of novel in vivo phosphorylation sites were detected in mKSR1 by use of mass spectrometry analysis. Among others, Tyr728 was identified as a unique regulatory residue phosphorylated by LCK, a Src kinase family member. To understand how phosphorylation of Tyr728 may regulate the function of KSR1 in signal transduction and cellular processes, structural modeling and biochemical studies were integrated in this work. Computational modeling of the mKSR1(KD) protein structure revealed strong hydrogen bonding between phospho-Tyr728 and the residues surrounding Arg649. Remarkably, this pattern was altered when Tyr728 was non-phosphorylated or substituted. As confirmed by biochemical analysis, Arg649 may serve as a major anchor point for phospho-Tyr728 in order to stabilize internal structures of KSR1. In line with the protein modeling results, mutational studies revealed that substitution of Tyr728 by phenylalanine leads to a less compact interaction between KSR1 and MEK, a facilitated KSR1/B-RAF binding and an increased phosphorylation of MEK in complex with KSR1. From these findings it can be concluded that phospho-Tyr728 is involved in tightening the KSR1/MEK interaction interface and in regulating the phosphorylation of KSR1-bound MEK by either RAF or KSR1 kinases. Beside the Tyr728, Ser722 was identified as a novel regulatory phosphorylation site. Amino acid exchanges at the relevant position demonstrated that Ser722 regulates KSR1-bound MEK phosphorylation without affecting KSR1/MEK binding per se. Due to its localization, Ser722 might consequently control the catalytic activity of KSR1 by interfering with the access of substrate (possibly MEK) to the active site of KSR1 kinase. Together with Ser722, phosphorylated Tyr728 may further positively affect the kinase activity of KSR1 as a consequence of its vicinity to the activation and catalytic loop in the KSR1(KD). As revealed by structural modeling, phospho-Tyr728 builds a hydrogen bond with the highly conserved Lys685. Consequently, phospho-Tyr728 has a stabilizing effect on internal structures involved in the catalytic reaction and possibly enhances the phosphate transfer within the catalytic cleft in KSR1. Considering these facts, it seems very likely that the LCK-dependent phosphorylation of Tyr728 plays a crucial role in the regulation of KSR1 catalytic activity. Results of fractionation and morphology analyses revealed that KSR1 recruits LCK to cytoskeleton for its phosphorylation at Tyr728 suggesting that this residue may regulate cytoskeleton dynamics and, consequently, cell motility. Beside that, phosphorylation of Tyr728 is involved in the regulation of cell proliferation, as shown by a significantly reduced population doubling time of KSR1-Y728F cells compared to cells expressing wild type KSR1. Taken together, tyrosine phosphorylation in KSR1 uncovers a new link between Src family kinases and MAPK signaling. Tyr728, the novel regulatory phosphorylation site in murine KSR1, may coordinate the transition between the scaffolding and the catalytic function of KSR1 serving as a control point used to fine-tune cellular responses.}, subject = {MAP-Kinase}, language = {en} }