@phdthesis{Zeeshan2012, author = {Zeeshan, Ahmed}, title = {Bioinformatics Software for Metabolic and Health Care Data Management}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-73926}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Computer Science approaches (software, database, management systems) are powerful tools to boost research. Here they are applied to metabolic modelling in infections as well as health care management. Starting from a comparative analysis this thesis shows own steps and examples towards improvement in metabolic modelling software and health data management. In section 2, new experimental data on metabolites and enzymes induce high interest in metabolic modelling including metabolic flux calculations. Data analysis of metabolites, calculation of metabolic fluxes, pathways and their condition-specific strengths is now possible by an advantageous combination of specific software. How can available software for metabolic modelling be improved from a computational point of view? A number of available and well established software solutions are first discussed individually. This includes information on software origin, capabilities, development and used methodology. Performance information is obtained for the compared software using provided example data sets. A feature based comparison shows limitations and advantages of the compared software for specific tasks in metabolic modeling. Often found limitations include third party software dependence, no comprehensive database management and no standard format for data input and output. Graphical visualization can be improved for complex data visualization and at the web based graphical interface. Other areas for development are platform independency, product line architecture, data standardization, open source movement and new methodologies. The comparison shows clearly space for further software application development including steps towards an optimal user friendly graphical user interface, platform independence, database management system and third party independence especially in the case of desktop applications. The found limitations are not limited to the software compared and are of course also actively tackled in some of the most recent developments. Other improvements should aim at generality and standard data input formats, improved visualization of not only the input data set but also analyzed results. We hope, with the implementation of these suggestions, metabolic software applications will become more professional, cheap, reliable and attractive for the user. Nevertheless, keeping these inherent limitations in mind, we are confident that the tools compared can be recommended for metabolic modeling for instance to model metabolic fluxes in bacteria or metabolic data analysis and studies in infection biology. ...}, subject = {Stoffwechsel}, language = {en} } @phdthesis{Cecil2012, author = {Cecil, Alexander [geb. Schmid]}, title = {Metabolische Netzwerkanalysen f{\"u}r den Weg von xenobiotischen zu vertr{\"a}glichen antibiotischen Substanzen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-71866}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Durch das Auftreten neuer St{\"a}mme resistenter Krankheitserreger ist die Suche nach neuartigen Wirkstoffen gegen diese, sich st{\"a}ndig weiter ausbreitende Bedrohung, dringend notwendig. Der interdisziplin{\"a}re Sonderforschungsbereich 630 der Universit{\"a}t W{\"u}rzburg stellt sich dieser Aufgabe, indem hier neuartige Xenobiotika synthetisiert und auf ihre Wirksamkeit getestet werden. Die hier vorgelegte Dissertation f{\"u}gt sich hierbei nahtlos in die verschiedenen Fachbereiche des SFB630 ein: Sie stellt eine Schnittstelle zwischen Synthese und Analyse der Effekte der im Rahmen des SFB630 synthetisierten Isochinolinalkaloid-Derivaten. Mit den hier angewandten bioinformatischen Methoden wurden zun{\"a}chst die wichtigsten Stoffwechselwege von S. epidermidis R62A, S. aureus USA300 und menschlicher Zellen in sogenannten metabolischen Netzwerkmodellen nachgestellt. Basierend auf diesen Modellen konnten Enzymaktivit{\"a}ten f{\"u}r verschiedene Szenarien an zugesetzten Xenobiotika berechnet werden. Die hierf{\"u}r ben{\"o}tigten Daten wurden direkt aus Genexpressionsanalysen gewonnen. Die Validierung dieser Methode erfolgte durch Metabolommessungen. Hierf{\"u}r wurde S. aureus USA300 mit verschiedenen Konzentrationen von IQ-143 behandelt und gem{\"a}ß dem in dieser Dissertation vorgelegten Ernteprotokoll aufgearbeitet. Die Ergebnisse hieraus lassen darauf schließen, dass IQ-143 starke Effekte auf den Komplex 1 der Atmungskette aus{\"u}bt - diese Resultate decken sich mit denen der metabolischen Netzwerkanalyse. F{\"u}r den Wirkstoff IQ-238 ergaben sich trotz der strukturellen {\"A}hnlichkeiten zu IQ-143 deutlich verschiedene Wirkeffekte: Dieser Stoff verursacht einen direkten Abfall der Enzymaktivit{\"a}ten in der Glykolyse. Dadurch konnte eine unspezifische Toxizit{\"a}t dieser Stoffe basierend auf ihrer chemischen Struktur ausgeschlossen werden. Weiterhin konnten die bereits f{\"u}r IQ-143 und IQ-238 auf Bakterien angewandten Methoden erfolgreich zur Modellierung der Effekte von Methylenblau auf verschiedene resistente St{\"a}mme von P. falciparum 3D7 angewandt werden. Dadurch konnte gezeigt werden, dass Methylenblau in einer Kombination mit anderen Pr{\"a}paraten gegen diesen Parasiten zum einen die Wirkung des Prim{\"a}rpr{\"a}parates verst{\"a}rkt, zum anderen aber auch in gewissem Maße vorhandene Resistenzen gegen das Prim{\"a}rpr{\"a}parat zu verringern vermag. Somit konnte durch die vorgelegte Arbeit eine Pipeline zur Identifizierung der metabolischen Effekte verschiedener Wirkstoffe auf unterschiedliche Krankheitserreger erstellt werden. Diese Pipeline kann jederzeit auf andere Organismen ausgeweitet werden und stellt somit einen wichtigen Ansatz um Netzwerkeffekte verschiedener, potentieller Medikamente aufzukl{\"a}ren.}, subject = {Stoffwechsel}, language = {de} }