@article{SprengerMuesseHartkeetal.2021, author = {Sprenger, Philipp P. and M{\"u}sse, Christian and Hartke, Juliane and Feldmeyer, Barbara and Schmitt, Thomas and Gebauer, Gerhard and Menzel, Florian}, title = {Dinner with the roommates: trophic niche differentiation and competition in a mutualistic ant-ant association}, series = {Ecological Entomology}, volume = {46}, journal = {Ecological Entomology}, number = {3}, doi = {10.1111/een.13002}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-228215}, pages = {562 -- 572}, year = {2021}, abstract = {1. The potential for competition is highest among species in close association. Despite net benefits for both parties, mutualisms can involve costs, including food competition. This might be true for the two neotropical ants Camponotus femoratus and Crematogaster levior, which share the same nest in a presumably mutualistic association (parabiosis). 2. While each nest involves one Crematogaster and one Camponotus partner, both taxa were recently found to comprise two cryptic species that show no partner preferences and seem ecologically similar. Since these cryptic species often occur in close sympatry, they might need to partition their niches to avoid competitive exclusion. 3. Here, we investigated first, is there interference competition between parabiotic Camponotus and Crematogaster, and do they prefer different food sources under competition? And second, is there trophic niche partitioning between the cryptic species of either genus? 4. Using cafeteria experiments, neutral lipid fatty acid and stable isotope analyses, we found evidence for interference competition, but also trophic niche partitioning between Camponotus and Crematogaster. Both preferred protein- and carbohydrate-rich baits, but at protein-rich baits Ca. femoratus displaced Cr. levior over time, suggesting a potential discovery-dominance trade-off between parabiotic partners. Only limited evidence was found for trophic differentiation between the cryptic species of each genus. 5. Although we cannot exclude differentiation in other niche dimensions, we argue that neutral dynamics might mediate the coexistence of cryptic species. This model system is highly suitable for further studies of the maintenance of species diversity and the role of mutualisms in promoting species coexistence.}, language = {en} } @article{HartkeWaldvogelSprengeretal.2021, author = {Hartke, Juliane and Waldvogel, Ann-Marie and Sprenger, Philipp P. and Schmitt, Thomas and Menzel, Florian and Pfenninger, Markus and Feldmeyer, Barbara}, title = {Little parallelism in genomic signatures of local adaptation in two sympatric, cryptic sister species}, series = {Journal of Evolutionary Biology}, volume = {34}, journal = {Journal of Evolutionary Biology}, number = {6}, doi = {10.1111/jeb.13742}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-228355}, pages = {937 -- 952}, year = {2021}, abstract = {Species living in sympatry and sharing a similar niche often express parallel phenotypes as a response to similar selection pressures. The degree of parallelism within underlying genomic levels is often unexplored, but can give insight into the mechanisms of natural selection and adaptation. Here, we use multi-dimensional genomic associations to assess the basis of local and climate adaptation in two sympatric, cryptic Crematogaster levior ant species along a climate gradient. Additionally, we investigate the genomic basis of chemical communication in both species. Communication in insects is mainly mediated by cuticular hydrocarbons (CHCs), which also protect against water loss and, hence, are subject to changes via environmental acclimation or adaptation. The combination of environmental and chemical association analyses based on genome-wide Pool-Seq data allowed us to identify single nucleotide polymorphisms (SNPs) associated with climate and with chemical differences. Within species, CHC changes as a response to climate seem to be driven by phenotypic plasticity, since there is no overlap between climate- and CHC-associated SNPs. The only exception is the odorant receptor OR22c, which may be a candidate for population-specific CHC recognition in one of the species. Within both species, climate is significantly correlated with CHC differences, as well as to allele frequency differences. However, associated candidate SNPs, genes and functions are largely species-specific and we find evidence for minimal parallel evolution only on the level of genomic regions (J = 0.04). This highlights that even closely related species may follow divergent evolutionary trajectories when expressing similar adaptive phenotypes.}, language = {en} } @article{KronauerPetersSchoningetal.2011, author = {Kronauer, Daniel J. C. and Peters, Marcell K. and Schoning, Caspar and Boomsma, Jacobus J.}, title = {Hybridization in East African swarm-raiding army ants}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-68798}, year = {2011}, abstract = {Background: Hybridization can have complex effects on evolutionary dynamics in ants because of the combination of haplodiploid sex-determination and eusociality. While hybrid non-reproductive workers have been found in a range of species, examples of gene-flow via hybrid queens and males are rare. We studied hybridization in East African army ants (Dorylus subgenus Anomma) using morphology, mitochondrial DNA sequences, and nuclear microsatellites. Results: While the mitochondrial phylogeny had a strong geographic signal, different species were not recovered as monophyletic. At our main study site at Kakamega Forest, a mitochondrial haplotype was shared between a "Dorylus molestus-like" and a "Dorylus wilverthi-like" form. This pattern is best explained by introgression following hybridization between D. molestus and D. wilverthi. Microsatellite data from workers showed that the two morphological forms correspond to two distinct genetic clusters, with a significant proportion of individuals being classified as hybrids. Conclusions: We conclude that hybridization and gene-flow between the two army ant species D. molestus and D. wilverthi has occurred, and that mating between the two forms continues to regularly produce hybrid workers. Hybridization is particularly surprising in army ants because workers have control over which males are allowed to mate with a young virgin queen inside the colony.}, subject = {Zoologie}, language = {en} } @phdthesis{Menzel2009, author = {Menzel, Florian}, title = {Mechanisms and adaptive significance of interspecific associations between tropical ant species}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-37251}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2009}, abstract = {Aggression between ants from different colonies or species is ubiquitous. Exceptions to this rule exist in the form of supercolonies (within a species) and interspecific associations (between species). Probably the most intimate interspecific association is the parabiosis, where two ant species live together in a common nest. They keep their brood separate but jointly use trails and often share food resources. Parabioses are restricted to few species pairings and occur in South American and Southeast Asian rainforests. While the South American parabioses have been studied, albeit poorly, almost nothing is known about their Southeast Asian counterparts. My PhD project focuses on Southeast Asian parabioses between the myrmicine Crematogaster modiglianii Emery 1900 and the considerably larger formicine Camponotus rufifemur Emery 1900. The two species frequently nest together in hollow trees in the tropical lowland rainforest of Borneo. The basic question of my PhD project is why these two species live together. I investigated both proximate and ultimate aspects of this question. For comparative purposes, I included studies on a trail-sharing association in the same habitat. On the proximate level, I investigated which mechanisms facilitate tolerance towards hetero-spe¬ci¬fic nestmates. Ants generally discriminate nestmates from non-nestmates via cuticular hydro¬carbons that function as colony recognition cues. I studied the specificity of nestmate recognition within and between the two parabiotic species. Using gas chromatography-mass spectrometry (GC-MS), I analyzed the cuticular substances in both ant species to find potential differences to non-parabiotic species, and to estimate the substance overlap among the two species. A high substance overlap would e.g. suggest that interspecific tolerance is caused by chemical mimicry. Finally, bioassays were conducted to evaluate the function of different cuticular compounds. Interspecific tolerance in the two parabiotic species was species-specific but not colony-specific. Ca. rufifemur tolerated all Cr. modiglianii individuals, even those from foreign colonies, but strongly attacked workers of other Crematogaster species. Cr. modiglianii, in turn, tolerated Ca. rufifemur workers of certain foreign colonies but attacked those of others. Chemical analyses revealed two sympatric, chemically distinct Ca. rufifemur varieties ('red' and 'black') with almost no hydrocarbon overlap. Cr. modiglianii only tolerated foreign Ca. rufifemur workers if they belonged to the same chemical variety as their own Ca. rufifemur partner. It also attacked other, non-parabiotic Camponotus species. Thus, reciprocal interspecific tolerance was restricted to the species Cr. modiglianii and Ca. rufifemur. Ca. rufifemur frequently tolerated conspecific non-nestmates of the same chemical variety. Minor workers were more often tolerated than majors, possibly because they possess two to three times lower hydrocarbon quantities per body surface than majors. In contrast, Cr. modiglianii nearly always attacked conspecific non-nestmates. Both species possessed hydrocarbons with considerably higher chain lengths than congeneric, non-parabiotic ant species. Long-chain hydrocarbons are less volatile than shorter ones and thus harder to perceive. They may thus considerably facilitate interspecific tolerance. Moreover, up to 98\% of the cuticular hydrocarbons in Ca. rufifemur were methylbranched alkenes, which are highly unusual among insect cuticular hydrocarbons. Cr. modiglianii and Ca. rufifemur had almost no hydrocarbons in common, refuting chemical mimicry as a possible cause of interspecific tolerance. The only hydrocarbons common to both species were two methylbranched alkenes, which constituted 89\% of the 'red' Ca. rufifemur hydrocarbon profile and also occurred in those Cr. modiglianii colonies that lived together with this Ca. rufifemur variety. Cr. modiglianii presumably acquired these two compounds from its red Ca. rufifemur partner. Cr. modiglianii was significantly less aggressive towards foreign Cr. modiglianii workers that were associated with the same Ca. rufifemur variety than to those associated with the respective other one. Hence, this species seemed to use recognition cues acquired from its parabiotic partner. Apart from hydrocarbons, both species possessed a set of hitherto unknown substances on their cuticle. The quantitative composition of the unknown compounds varied between parabiotic nests but was similar among the two species of a nest. They are probably produced in the Dufour glanf of Cr. modiglianii and transferred to their Ca. rufifemur partner. Possible transfer mechanisms include interspecific trophallaxis and 'mounting behaviour', where Cr. modiglianii climbed onto Ca. rufifemur workers without being displaced. Although the composition of the unknown compounds greatly varied between nests, they did not function as nestmate recognition cues since both species used hydrocarbons for nestmate recognition. However, the unknown compounds significantly reduced aggression in Ca. rufifemur. The ultimate, i.e. ecological and evolutionary aspects of my PhD research deal with potential costs and benefits that Cr. modiglianii and Ca. rufifemur may derive from the parabiotic association, their interactions with other species, and population genetic analyses. Additional studies on a trail-sharing association between three other ant species deal with two possible mechanisms that may cause or facilitate trail-sharing. Whether parabioses are parasitic, commensalistic, or mutualistic, is largely unknown and depends on the costs and benefits each party derives from the association. I therefore investigated food competition (as one of the most probable costs), differentiation of foraging niches (which can reduce competition), and several potential benefits of the parabiotic way of life. Besides, I studied interactions between the ant species and the hemiepiphyte Poikilospermum cordifolium. The foraging niches of the two species differed regarding foraging range, daily activity pattern, and food preferences. None of the two species aggressively displaced its partner species from baits. Thus, interference competition for food seemed to be low or absent. For both ant species, a number of benefits from the parabiotic lifestyle seem possible. They include interspecific trail-following, joint nest defence, provision of nest space by the partner species, food exchange via trophallaxis, and mutual brood care. If an ant species follows another species' pheromone trails, it can reach food resources found by the other species. As shown by artificial extract trails, Ca. rufifemur workers indeed followed trails of Cr. modiglianii but not vice versa. Thus, Ca. rufifemur benefited from Cr. modiglianii's knowledge on food sources (informational parasitism). In turn, Cr. modiglianii seemed to profit from nest defence by Ca. rufifemur. Ca. rufifemur majors are substantially larger than Cr. modiglianii workers. Although Cr. modiglianii often effectively defended the nest as well, it seemed likely that this species derived a benefit from its partner's defensive abilities. In neotropical parabioses (ant-gardens), mutualistic epiphytes play an important role in providing nest space. The neotropical Camponotus benefits its Crematogaster partner by planting epiphyte seeds, for which Crematogaster is too small. Similarly, the Bornean parabioses often were inhabited by the hemiepiphyte Poikilospermum cordifolium (Barg.-Petr.) Merr (Cecropiaceae). P. cordifolium seedlings, saplings and sometimes larger indivi¬duals abundantly grew at the entrances of parabiotic nests. However, P. cordifolium provides no additional nest space and, apart from nutritive elaiosomes, perianths, and extrafloral nectar probably plays a less important role for the ants than the neotropical epiphytes. In conclusion, the parabiosis is probably beneficial to both species. The main benefits seem to be nest defence (for Cr. modiglianii) and interspecific trail-following (for Ca. rufifemur). However, Ca. rufifemur seems to be more dependent on its partner than vice versa. For both parabiotic species, I analyzed mitochondrial DNA of ants from different regions in Borneo. My data suggest that there are four genetically and chemically distinct, but closely related varieties of Camponotus rufifemur. In contrast, Crematogaster modiglianii showed high genetic differentiation between distant populations but was not differentiated into genetic or chemical varieties. This argues against variety-specific cocladogenesis between Cr. modiglianii and Ca. rufifemur, although a less specific coevolution of the two species is highly likely. In Bornean rainforests, trail-sharing associations of Polyrhachis (Polyrhachis) ypsilon Emery 1887 and Camponotus (Colobopsis) saundersi Emery 1889 are common and often include further species such as Dolichoderus cuspidatus Smith 1857. I investigated a trail-sharing association between these three species and studied two mechanisms that may cause or facilitate these associations: interspecific trail-following, i.e. workers following another species' pheromone trail, and differential inter¬specific aggression. In trail-following assays, D. cuspidatus regularly followed extract trails of the other two species, thus probably parasitizing on their information on food sources. In contrast, only few P. ypsilon and Ca. saundersi workers followed hetero¬speci¬fic extract trails. Hence, the association between P. ypsilon and Ca. saundersi cannot be ex¬plained by foragers following heterospecific trails. In this case, trail-sharing may originate from few scout ants that do follow heterospecific pheromone trails and then lay their own trails. Interspecific aggression among P. ypsilon, Ca. saundersi and D. cuspidatus was strongly asymmetric, Ca. saundersi being submissive to the other two species. All three species discriminated between heterospecific workers from the same and a distant trail-sharing site. Thus, it seems likely that the species of a given trail-sharing site habituate to one another. Differential tolerance by dominant ant species may be mediated by selective habituation towards submissive species, and thereby influence the assembly of trail-sharing associations.}, subject = {Ameisen}, language = {en} } @phdthesis{Trunzer1999, author = {Trunzer, Brigitte}, title = {Paarungsh{\"a}ufigkeit und Aufteilung der Reproduktion bei Pachycondyla villosa}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-2436}, school = {Universit{\"a}t W{\"u}rzburg}, year = {1999}, abstract = {In Ameisensoziet{\"a}ten treten h{\"a}ufig Konflikte um die Reproduktion auf. Um dabei das soziale Verhalten der beteiligten Individuen und die Koloniestruktur zu verstehen ist es wichtig, die Verwandtschaftsstruktur innerhalb der Kolonien zu kennen. Diese wird durch die Paarungsh{\"a}ufigkeit der K{\"o}niginnen, die Anzahl der K{\"o}niginnen im Nest, deren Verwandtschaftsgrad zueinander, sowie der Aufteilung der Reproduktion zwischen ihnen bestimmt. Bei Pachycondyla villosa wurden durch die genetische Analyse dieser Faktoren mittels Multilokus-DNA- Fingerprinting das Paarungssystem und die Koloniestruktur genauer untersucht. Die Bestimmung der Paarungsh{\"a}ufigkeit ergab, daß sich P. villosa-K{\"o}niginnen nur einmal paaren. Befanden sich mehrere K{\"o}niginnen in einem Nest, so waren sie nicht miteinander verwandt und die Reproduktion war gleichm{\"a}ßig zwischen ihnen aufgeteilt. Im Gegensatz zu den polygynen Kolonien von P. villosa traten in k{\"o}niginlosen Arbeiterinnengruppen zwischen den assoziierten Tieren heftige Konflikte um die Reproduktion auf. Diese f{\"u}hrten zur Etablierung linearer Dominanzhierarchien und die Alpha-Tiere waren bei der Produktion von M{\"a}nnchen am erfolgreichsten. Betreuer H{\"o}lldobler, Berthold; Prof. Dr. Gutachter H{\"o}lldobler, Berthold; Prof. Dr. Gutachter Heinze, J{\"u}rgen; Prof. Dr.}, subject = {Ponerinae}, language = {de} } @phdthesis{Kleineidam1999, author = {Kleineidam, Christoph}, title = {Sensory Ecology of Carbon Dioxide Perception in Leaf-cutting Ants}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-1562}, school = {Universit{\"a}t W{\"u}rzburg}, year = {1999}, abstract = {The study examines the sensory ecology of CO2 perception in leaf-cutting ants. It begins with the ecological role of CO2 for leaf-cutting ants. Inside the subterranean nests of Atta vollenweideri large amounts of CO2 are produced by the ants and their symbiotic fungus. Measurements in field nest at different depths revealed that CO2 concentrations do not exceed 2 per cent in mature nests. These findings indicate effective ventilation even at depths of 2 m. Small colonies often face the situation of reduced ventilation when they close their nest openings as a measure against flooding. A simulation of this situation in the field as well as in the laboratory revealed increasing CO2 concentrations causing reduced colony respiration which ultimately might limit colony success. Wind-induced ventilation is the predominant ventilation mechanism of the nests of Atta vollenweideri, shown by an analysis of external wind and airflow in the channels. The mound architecture promotes nest ventilation. Outflow channels have their openings in the upper, central region and inflow channels had their openings in the lower, peripheral region of the nest mound. Air is sucked out through the central channels, followed by a delayed inflow of air through the peripheral channels. The findings support the idea that the nest ventilation mechanism used by Atta vollenweideri resembles the use of Bernoulli's principle in Venturi Tubes and Viscous Entrainment. CO2 is important in a second context besides microclimatic control. A laboratory experiment with Atta sexdens demonstrated that leaf-cutting ants are able to orientate in a CO2 gradient. Foragers chose places with higher CO2 concentration when returning to the nest. This effect was found in all homing foragers, but it was pronounced for workers carrying leaf fragments compared to workers without leaf fragments. The findings support the hypothesis that CO2 gradients are used as orientation cue inside the (dark) nest to find suited fungus chambers for unloading of the leaf fragments. After the importance of CO2 in the natural history of the ants has thus been demonstrated, the study identifies for the first time in Hymenoptera type and location of the sensory organ for CO2 perception. In Atta sexdens a single neuron associated with the sensilla ampullacea was found to respond to CO2. Since it is the only neuron of this sensillum, the sensillum characters can be assumed to be adapted for CO2 perception. A detailed description of the morphology and the ultrastructure allows a comparison with sensilla for CO2 perception found in other insects and provides more information about sensillum characters and their functional relevance. The CO2 receptor cells respond to increased CO2 with increased neural activity. The frequency of action potentials generated by the receptor cell shows a phasic-tonic time course during CO2 stimulation and a reduced activity after stimulation. Phasic response accomplished with a reduced activity after stimulation results in contrast enhancement and the ability to track fast fluctuations in CO2 concentration. The neurons have a working range of 0 to 10 per cent CO2 and thus are able to respond to the highest concentrations the ants might encounter in their natural environment. The most exciting finding concerning the receptor cells is that the CO2 neurons of the leaf-cutting ants do not adapt to continuous stimulation. This enables the ants to continuously monitor the actual CO2 concentration of their surroundings. Thus, the sensilla ampullacea provide the ants with the information necessary to orientate in a CO2 gradient (tracking of fluctuations) as well as with the necessary information for microclimatic control (measuring of absolute concentrations).}, subject = {Blattschneiderameisen}, language = {en} }