@phdthesis{Ljaschenko2013, author = {Ljaschenko, Dmitrij}, title = {Hebbian plasticity at neuromuscular synapses of Drosophila}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-90465}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Synaptic plasticity determines the development of functional neural circuits. It is widely accepted as the mechanism behind learning and memory. Among different forms of synaptic plasticity, Hebbian plasticity describes an activity-induced change in synaptic strength, caused by correlated pre- and postsynaptic activity. Additionally, Hebbian plasticity is characterised by input specificity, which means it takes place only at synapses, which participate in activity. Because of its correlative nature, Hebbian plasticity suggests itself as a mechanism behind associative learning. Although it is commonly assumed that synaptic plasticity is closely linked to synaptic activity during development, the mechanistic understanding of this coupling is far from complete. In the present study channelrhodopsin-2 was used to evoke activity in vivo, at the glutamatergic Drosophila neuromuscular junction. Remarkably, correlated pre- and postsynaptic stimulation led to increased incorporation of GluR-IIA-type glutamate receptors into postsynaptic receptor fields, thus boosting postsynaptic sensitivity. This phenomenon is input-specific. Conversely, GluR-IIA was rapidly removed from synapses at which neurotransmitter release failed to evoke substantial postsynaptic depolarisation. This mechanism might be responsible to tame uncontrolled receptor field growth. Combining these results with developmental GluR-IIA dynamics leads to a comprehensive physiological concept, where Hebbian plasticity guides growth of postsynaptic receptor fields and sparse transmitter release stabilises receptor fields by preventing overgrowth. Additionally, a novel mechanism of retrograde signaling was discovered, where direct postsynaptic channelrhodopsin-2 based stimulation, without involvement of presynaptic neurotransmitter release, leads to presynaptic depression. This phenomenon is reminiscent of a known retrograde homeostatic mechanism, of inverted polarity, where neurotransmitter release is upregulated, upon reduction of postsynaptic sensitivity.}, subject = {Synapse}, language = {en} } @phdthesis{EngelhardtgebChristiansen2013, author = {Engelhardt [geb. Christiansen], Frauke}, title = {Synaptic Connectivity in the Mushroom Body Calyx of Drosophila melanogaster}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-85058}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Learning and memory is considered to require synaptic plasticity at presynaptic specializations of neurons. Kenyon cells are the intrinsic neurons of the primary olfactory learning center in the brain of arthropods - the mushroom body neuropils. An olfactory mushroom body memory trace is supposed to be located at the presynapses of Kenyon cells. In the calyx, a sub-compartment of the mushroom bodies, Kenyon cell dendrites receive olfactory input provided via projection neurons. Their output synapses, however, were thought to reside exclusively along their axonal projections outside the calyx, in the mushroom body lobes. By means of high-resolution imaging and with novel transgenic tools, we showed that the calyx of the fruit fly Drosophila melanogaster also comprised Kenyon cell presynapses. At these presynapses, synaptic vesicles were present, which were capable of neurotransmitter release upon stimulation. In addition, the newly identified Kenyon cell presynapses shared similarities with most other presynapses: their active zones, the sites of vesicle fusion, contained the proteins Bruchpilot and Syd-1. These proteins are part of the cytomatrix at the active zone, a scaffold controlling synaptic vesicle endo- and exocytosis. Kenyon cell presynapses were present in γ- and α/β-type KCs but not in α/β-type Kenyon cells. The newly identified Kenyon cell derived presynapses in the calyx are candidate sites for an olfactory associative memory trace. We hypothesize that, as in mammals, recurrent neuronal activity might operate for memory retrieval in the fly olfactory system. Moreover, we present evidence for structural synaptic plasticity in the mushroom body calyx. This is the first demonstration of synaptic plasticity in the central nervous system of Drosophila melanogaster. The volume of the mushroom body calyx can change according to changes in the environment. Also size and numbers of microglomeruli - sub-structures of the calyx, at which projection neurons contact Kenyon cells - can change. We investigated the synapses within the microglomeruli in detail by using new transgenic tools for visualizing presynaptic active zones and postsynaptic densities. Here, we could show, by disruption of the projection neuron - Kenyon cell circuit, that synapses of microglomeruli were subject to activity-dependent synaptic plasticity. Projection neurons that could not generate action potentials compensated their functional limitation by increasing the number of active zones per microglomerulus. Moreover, they built more and enlarged microglomeruli. Our data provide clear evidence for an activity-induced, structural synaptic plasticity as well as for the activity-induced reorganization of the olfactory circuitry in the mushroom body calyx.}, subject = {Taufliege}, language = {en} }