@article{HanTaniosReepsetal.2016, author = {Han, Yanshuo and Tanios, Fadwa and Reeps, Christian and Zhang, Jian and Schwamborn, Kristina and Eckstein, Hans-Henning and Zernecke, Alma and Pelisek, Jaroslav}, title = {Histone acetylation and histone acetyltransferases show significant alterations in human abdominal aortic aneurysm}, series = {Clinical Epigenetics}, volume = {8}, journal = {Clinical Epigenetics}, number = {3}, doi = {10.1186/s13148-016-0169-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-162557}, year = {2016}, abstract = {Background Epigenetic modifications may play a relevant role in the pathogenesis of human abdominal aortic aneurysm (AAA). The aim of the study was therefore to investigate histone acetylation and expression of corresponding lysine [K] histone acetyltransferases (KATs) in AAA. Results A comparative study of AAA tissue samples (n = 37, open surgical intervention) and healthy aortae (n = 12, trauma surgery) was performed using quantitative PCR, immunohistochemistry (IHC), and Western blot. Expression of the KAT families GNAT (KAT2A, KAT2B), p300/CBP (KAT3A, KAT3B), and MYST (KAT5, KAT6A, KAT6B, KAT7, KAT8) was significantly higher in AAA than in controls (P ≤ 0.019). Highest expression was observed for KAT2B, KAT3A, KAT3B, and KAT6B (P ≤ 0.007). Expression of KAT2B significantly correlated with KAT3A, KAT3B, and KAT6B (r = 0.705, 0.564, and 0.528, respectively, P < 0.001), and KAT6B with KAT3A, KAT3B, and KAT6A (r = 0.407, 0.500, and 0.531, respectively, P < 0.05). Localization of highly expressed KAT2B, KAT3B, and KAT6B was further characterized by immunostaining. Significant correlations were observed between KAT2B with endothelial cells (ECs) (r = 0.486, P < 0.01), KAT3B with T cells and macrophages, (r = 0.421 and r = 0.351, respectively, P < 0.05), KAT6A with intramural ECs (r = 0.541, P < 0.001) and with a contractile phenotype of smooth muscle cells (SMCs) (r = 0.425, P < 0.01), and KAT6B with T cells (r = 0.553, P < 0.001). Furthermore, KAT2B was associated with AAA diameter (r = 0.382, P < 0.05), and KAT3B, KAT6A, and KAT6B correlated negatively with blood urea nitrogen (r = -0.403, -0.408, -0.478, P < 0.05). In addtion, acetylation of the histone substrates H3K9, H3K18 and H3K14 was increased in AAA compared to control aortae. Conclusions Our results demonstrate that aberrant epigenetic modifications such as changes in the expression of KATs and acetylation of corresponding histones are present in AAA. These findings may provide new insight in the pathomechanism of AAA.}, language = {en} } @article{BuschBuschScholzetal.2016, author = {Busch, Albert and Busch, Martin and Scholz, Claus-J{\"u}rgen and Kellersmann, Richard and Otto, Christoph and Chernogubova, Ekaterina and Maegdefessel, Lars and Zernecke, Alma and Lorenz, Udo}, title = {Aneurysm miRNA Signature Differs, Depending on Disease Localization and Morphology}, series = {International Journal of Molecular Science}, volume = {17}, journal = {International Journal of Molecular Science}, number = {1}, issn = {International Journal of Molecular Science}, doi = {10.3390/ijms17010081}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-146422}, pages = {81}, year = {2016}, abstract = {Limited comprehension of aneurysm pathology has led to inconclusive results from clinical trials. miRNAs are key regulators of post-translational gene modification and are useful tools in elucidating key features of aneurysm pathogenesis in distinct entities of abdominal and popliteal aneurysms. Here, surgically harvested specimens from 19 abdominal aortic aneurysm (AAA) and 8 popliteal artery aneurysm (PAA) patients were analyzed for miRNA expression and histologically classified regarding extracellular matrix (ECM) remodeling and inflammation. DIANA-based computational target prediction and pathway enrichment analysis verified our results, as well as previous ones. miRNA-362, -19b-1, -194, -769, -21 and -550 were significantly down-regulated in AAA samples depending on degree of inflammation. Similar or inverse regulation was found for miR-769, 19b-1 and miR-550, -21, whereas miR-194 and -362 were unaltered in PAA. In situ hybridization verified higher expression of miR-550 and -21 in PAA compared to AAA and computational analysis for target genes and pathway enrichment affirmed signal transduction, cell-cell-interaction and cell degradation pathways, in line with previous results. Despite the vague role of miRNAs for potential diagnostic and treatment purposes, the number of candidates from tissue signature studies is increasing. Tissue morphology influences subsequent research, yet comparison of distinct entities of aneurysm disease can unravel core pathways.}, language = {en} }