@article{OpolkaMuellerFellaetal.2021, author = {Opolka, Alexander and M{\"u}ller, Dominik and Fella, Christian and Balles, Andreas and Mohr, J{\"u}rgen and Last, Arndt}, title = {Multi-lens array full-field X-ray microscopy}, series = {Applied Sciences}, volume = {11}, journal = {Applied Sciences}, number = {16}, issn = {2076-3417}, doi = {10.3390/app11167234}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-244974}, year = {2021}, abstract = {X-ray full-field microscopy at laboratory sources for photon energies above 10 keV suffers from either long exposure times or low resolution. The photon flux is mainly limited by the objectives used, having a limited numerical aperture NA. We show that this can be overcome by making use of the cone-beam illumination of laboratory sources by imaging the same field of view (FoV) several times under slightly different angles using an array of X-ray lenses. Using this technique, the exposure time can be reduced drastically without any loss in terms of resolution. A proof-of-principle is given using an existing laboratory metal-jet source at the 9.25 keV Ga K\(_α\)-line and compared to a ray-tracing simulation of the setup.}, language = {en} } @article{TufarelliFriedrichGrossetal.2021, author = {Tufarelli, Tommaso and Friedrich, Daniel and Groß, Heiko and Hamm, Joachim and Hess, Ortwin and Hecht, Bert}, title = {Single quantum emitter Dicke enhancement}, series = {Physical Review Research}, volume = {3}, journal = {Physical Review Research}, doi = {10.1103/PhysRevResearch.3.033103}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-261459}, year = {2021}, abstract = {Coupling N identical emitters to the same field mode is a well-established method to enhance light-matter interaction. However, the resulting √N boost of the coupling strength comes at the cost of a "linearized" (effectively semiclassical) dynamics. Here, we instead demonstrate a new approach for enhancing the coupling constant of a single quantum emitter, while retaining the nonlinear character of the light-matter interaction. We consider a single quantum emitter with N nearly degenerate transitions that are collectively coupled to the same field mode. We show that in such conditions an effective Jaynes-Cummings model emerges with a boosted coupling constant of order √N. The validity and consequences of our general conclusions are analytically demonstrated for the instructive case N=2. We further observe that our system can closely match the spectral line shapes and photon autocorrelation functions typical of Jaynes-Cummings physics, proving that quantum optical nonlinearities are retained. Our findings match up very well with recent broadband plasmonic nanoresonator strong-coupling experiments and will, therefore, facilitate the control and detection of single-photon nonlinearities at ambient conditions.}, language = {en} } @article{WeissenseelGottschollBoennighausenetal.2021, author = {Weissenseel, Sebastian and Gottscholl, Andreas and B{\"o}nnighausen, Rebecca and Dyakonov, Vladimir and Sperlich, Andreas}, title = {Long-lived spin-polarized intermolecular exciplex states in thermally activated delayed fluorescence-based organic light-emitting diodes}, series = {Science Advances}, volume = {7}, journal = {Science Advances}, number = {47}, doi = {10.1126/sciadv.abj9961}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-265508}, year = {2021}, abstract = {Spin-spin interactions in organic light-emitting diodes (OLEDs) based on thermally activated delayed fluorescence (TADF) are pivotal because radiative recombination is largely determined by triplet-to-singlet conversion, also called reverse intersystem crossing (RISC). To explore the underlying process, we apply a spin-resonance spectral hole-burning technique to probe electroluminescence. We find that the triplet exciplex states in OLEDs are highly spin-polarized and show that these states can be decoupled from the heterogeneous nuclear environment as a source of spin dephasing and can even be coherently manipulated on a spin-spin relaxation time scale T-2* of 30 ns. Crucially, we obtain the characteristic triplet exciplex spin-lattice relaxation time T-1 in the range of 50 mu s, which far exceeds the RISC time. We conclude that slow spin relaxation rather than RISC is an efficiency-limiting step for intermolecular donor:acceptor systems. Finding TADF emitters with faster spin relaxation will benefit this type of TADF OLEDs.}, language = {en} } @article{Graetz2021, author = {Graetz, Jonas}, title = {Simulation study towards quantitative X-ray and neutron tensor tomography regarding the validity of linear approximations of dark-field anisotropy}, series = {Scientific Reports}, volume = {11}, journal = {Scientific Reports}, doi = {10.1038/s41598-021-97389-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-261844}, year = {2021}, abstract = {Tensor tomography is fundamentally based on the assumption of a both anisotropic and linear contrast mechanism. While the X-ray or neutron dark-field contrast obtained with Talbot(-Lau) interferometers features the required anisotropy, a preceding detailed study of dark-field signal origination however found its specific orientation dependence to be a non-linear function of the underlying anisotropic mass distribution and its orientation, especially challenging the common assumption that dark-field signals are describable by a function over the unit sphere. Here, two approximative linear tensor models with reduced orientation dependence are investigated in a simulation study with regard to their applicability to grating based X-ray or neutron dark-field tensor tomography. By systematically simulating and reconstructing a large sample of isolated volume elements covering the full range of feasible anisotropies and orientations, direct correspondences are drawn between the respective tensors characterizing the physically based dark-field model used for signal synthesization and the mathematically motivated simplified models used for reconstruction. The anisotropy of freely rotating volume elements is thereby confirmed to be, for practical reconstruction purposes, approximable both as a function of the optical axis' orientation or as a function of the interferometer's grating orientation. The eigenvalues of the surrogate models' tensors are found to exhibit fuzzy, yet almost linear relations to those of the synthesization model. Dominant orientations are found to be recoverable with a margin of error on the order of magnitude of 1 degrees. Although the input data must adequately address the full orientation dependence of dark-field anisotropy, the present results clearly support the general feasibility of quantitative X-ray dark-field tensor tomography within an inherent yet acceptable statistical margin of uncertainty.}, language = {en} } @article{GottschollDiezSoltamovetal.2021, author = {Gottscholl, Andreas and Diez, Matthias and Soltamov, Victor and Kasper, Christian and Krauße, Dominik and Sperlich, Andreas and Kianinia, Mehran and Bradac, Carlo and Aharonovich, Igor and Dyakonov, Vladimir}, title = {Spin defects in hBN as promising temperature, pressure and magnetic field quantum sensors}, series = {Nature Communications}, volume = {12}, journal = {Nature Communications}, number = {1}, doi = {10.1038/s41467-021-24725-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-261581}, year = {2021}, abstract = {Spin defects in solid-state materials are strong candidate systems for quantum information technology and sensing applications. Here we explore in details the recently discovered negatively charged boron vacancies (V\(_B\)\(^-\)) in hexagonal boron nitride (hBN) and demonstrate their use as atomic scale sensors for temperature, magnetic fields and externally applied pressure. These applications are possible due to the high-spin triplet ground state and bright spin-dependent photoluminescence of the V\(_B\)\(^-\). Specifically, we find that the frequency shift in optically detected magnetic resonance measurements is not only sensitive to static magnetic fields, but also to temperature and pressure changes which we relate to crystal lattice parameters. We show that spin-rich hBN films are potentially applicable as intrinsic sensors in heterostructures made of functionalized 2D materials.}, language = {en} } @article{UenzelmannBentmannFiggemeieretal.2021, author = {{\"U}nzelmann, M. and Bentmann, H. and Figgemeier, T. and Eck, P. and Neu, J. N. and Geldiyev, B. and Diekmann, F. and Rohlf, S. and Buck, J. and Hoesch, M. and Kall{\"a}ne, M. and Rossnagel, K. and Thomale, R. and Siegrist, T. and Sangiovanni, G. and Di Sante, D. and Reinert, F.}, title = {Momentum-space signatures of Berry flux monopoles in the Weyl semimetal TaAs}, series = {Nature Communications}, volume = {12}, journal = {Nature Communications}, number = {1}, doi = {10.1038/s41467-021-23727-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-260719}, year = {2021}, abstract = {Since the early days of Dirac flux quantization, magnetic monopoles have been sought after as a potential corollary of quantized electric charge. As opposed to magnetic monopoles embedded into the theory of electromagnetism, Weyl semimetals (WSM) exhibit Berry flux monopoles in reciprocal parameter space. As a function of crystal momentum, such monopoles locate at the crossing point of spin-polarized bands forming the Weyl cone. Here, we report momentum-resolved spectroscopic signatures of Berry flux monopoles in TaAs as a paradigmatic WSM. We carried out angle-resolved photoelectron spectroscopy at bulk-sensitive soft X-ray energies (SX-ARPES) combined with photoelectron spin detection and circular dichroism. The experiments reveal large spin- and orbital-angular-momentum (SAM and OAM) polarizations of the Weyl-fermion states, resulting from the broken crystalline inversion symmetry in TaAs. Supported by first-principles calculations, our measurements image signatures of a topologically non-trivial winding of the OAM at the Weyl nodes and unveil a chirality-dependent SAM of the Weyl bands. Our results provide directly bulk-sensitive spectroscopic support for the non-trivial band topology in the WSM TaAs, promising to have profound implications for the study of quantum-geometric effects in solids. Weyl semimetals exhibit Berry flux monopoles in momentum-space, but direct experimental evidence has remained elusive. Here, the authors reveal topologically non-trivial winding of the orbital-angular-momentum at the Weyl nodes and a chirality-dependent spin-angular-momentum of the Weyl bands, as a direct signature of the Berry flux monopoles in TaAs.}, language = {en} } @article{WinterAndelovicKampfetal.2021, author = {Winter, Patrick M. and Andelovic, Kristina and Kampf, Thomas and Hansmann, Jan and Jakob, Peter Michael and Bauer, Wolfgang Rudolf and Zernecke, Alma and Herold, Volker}, title = {Simultaneous measurements of 3D wall shear stress and pulse wave velocity in the murine aortic arch}, series = {Journal of Cardiovascular Magnetic Resonance}, volume = {23}, journal = {Journal of Cardiovascular Magnetic Resonance}, number = {1}, doi = {10.1186/s12968-021-00725-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259152}, pages = {34}, year = {2021}, abstract = {Purpose Wall shear stress (WSS) and pulse wave velocity (PWV) are important parameters to characterize blood flow in the vessel wall. Their quantification with flow-sensitive phase-contrast (PC) cardiovascular magnetic resonance (CMR), however, is time-consuming. Furthermore, the measurement of WSS requires high spatial resolution, whereas high temporal resolution is necessary for PWV measurements. For these reasons, PWV and WSS are challenging to measure in one CMR session, making it difficult to directly compare these parameters. By using a retrospective approach with a flexible reconstruction framework, we here aimed to simultaneously assess both PWV and WSS in the murine aortic arch from the same 4D flow measurement. Methods Flow was measured in the aortic arch of 18-week-old wildtype (n = 5) and ApoE\(^{-/-}\) mice (n = 5) with a self-navigated radial 4D-PC-CMR sequence. Retrospective data analysis was used to reconstruct the same dataset either at low spatial and high temporal resolution (PWV analysis) or high spatial and low temporal resolution (WSS analysis). To assess WSS, the aortic lumen was labeled by semi-automatically segmenting the reconstruction with high spatial resolution. WSS was determined from the spatial velocity gradients at the lumen surface. For calculation of the PWV, segmentation data was interpolated along the temporal dimension. Subsequently, PWV was quantified from the through-plane flow data using the multiple-points transit-time method. Reconstructions with varying frame rates and spatial resolutions were performed to investigate the influence of spatiotemporal resolution on the PWV and WSS quantification. Results 4D flow measurements were conducted in an acquisition time of only 35 min. Increased peak flow and peak WSS values and lower errors in PWV estimation were observed in the reconstructions with high temporal resolution. Aortic PWV was significantly increased in ApoE\(^{-/-}\) mice compared to the control group (1.7 ± 0.2 versus 2.6 ± 0.2 m/s, p < 0.001). Mean WSS magnitude values averaged over the aortic arch were (1.17 ± 0.07) N/m\(^2\) in wildtype mice and (1.27 ± 0.10) N/m\(^2\) in ApoE\(^{-/-}\) mice. Conclusion The post processing algorithm using the flexible reconstruction framework developed in this study permitted quantification of global PWV and 3D-WSS in a single acquisition. The possibility to assess both parameters in only 35 min will markedly improve the analyses and information content of in vivo measurements.}, language = {en} } @article{KiermaschFischerGilEscrigetal.2021, author = {Kiermasch, David and Fischer, Mathias and Gil-Escrig, Lid{\´o}n and Baumann, Andreas and Bolink, Henk J. and Dyakonov, Vladimir and Tvingstedt, Kristofer}, title = {Reduced Recombination Losses in Evaporated Perovskite Solar Cells by Postfabrication Treatment}, series = {Solar RRL}, volume = {5}, journal = {Solar RRL}, number = {11}, doi = {10.1002/solr.202100400}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-258003}, year = {2021}, abstract = {The photovoltaic perovskite research community has now developed a large set of tools and techniques to improve the power conversion efficiency (PCE). One such arcane trick is to allow the finished devices to dwell in time, and the PCE often improves. Herein, a mild postannealing procedure is implemented on coevaporated perovskite solar cells confirming a substantial PCE improvement, mainly attributed to an increased open-circuit voltage (V\(_{OC}\)). From a V\(_{OC}\) of around 1.11 V directly after preparation, the voltage improves to more than 1.18 V by temporal and thermal annealing. To clarify the origin of this annealing effect, an in-depth device experimental and simulation characterization is conducted. A simultaneous reduction of the dark saturation current, the ideality factor (n\(_{id}\)), and the leakage current is revealed, signifying a substantial impact of the postannealing procedure on recombination losses. To investigate the carrier dynamics in more detail, a set of transient optoelectrical methods is first evaluated, ascertaining that the bulk carrier lifetime is increased with device annealing. Second, a drift-diffusion simulation is used, confirming that the beneficial effect of the annealing has its origin in effective bulk trap passivation that accordingly leads to a reduction of Shockley-Read-Hall recombination rates.}, language = {en} } @article{AndelovicWinterKampfetal.2021, author = {Andelovic, Kristina and Winter, Patrick and Kampf, Thomas and Xu, Anton and Jakob, Peter Michael and Herold, Volker and Bauer, Wolfgang Rudolf and Zernecke, Alma}, title = {2D Projection Maps of WSS and OSI Reveal Distinct Spatiotemporal Changes in Hemodynamics in the Murine Aorta during Ageing and Atherosclerosis}, series = {Biomedicines}, volume = {9}, journal = {Biomedicines}, number = {12}, issn = {2227-9059}, doi = {10.3390/biomedicines9121856}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-252164}, year = {2021}, abstract = {Growth, ageing and atherosclerotic plaque development alter the biomechanical forces acting on the vessel wall. However, monitoring the detailed local changes in wall shear stress (WSS) at distinct sites of the murine aortic arch over time has been challenging. Here, we studied the temporal and spatial changes in flow, WSS, oscillatory shear index (OSI) and elastic properties of healthy wildtype (WT, n = 5) and atherosclerotic apolipoprotein E-deficient (Apoe\(^{-/-}\), n = 6) mice during ageing and atherosclerosis using high-resolution 4D flow magnetic resonance imaging (MRI). Spatially resolved 2D projection maps of WSS and OSI of the complete aortic arch were generated, allowing the pixel-wise statistical analysis of inter- and intragroup hemodynamic changes over time and local correlations between WSS, pulse wave velocity (PWV), plaque and vessel wall characteristics. The study revealed converse differences of local hemodynamic profiles in healthy WT and atherosclerotic Apoe\(^{-/-}\) mice, and we identified the circumferential WSS as potential marker of plaque size and composition in advanced atherosclerosis and the radial strain as a potential marker for vascular elasticity. Two-dimensional (2D) projection maps of WSS and OSI, including statistical analysis provide a powerful tool to monitor local aortic hemodynamics during ageing and atherosclerosis. The correlation of spatially resolved hemodynamics and plaque characteristics could significantly improve our understanding of the impact of hemodynamics on atherosclerosis, which may be key to understand plaque progression towards vulnerability.}, language = {en} } @article{BeierleinEgorovHarderetal.2021, author = {Beierlein, J. and Egorov, O. A. and Harder, T. H. and Gagel, P. and Emmerling, M. and Schneider, C. and H{\"o}fling, S. and Peschel, U. and Klembt, S.}, title = {Bloch Oscillations of Hybrid Light-Matter Particles in a Waveguide Array}, series = {Advanced Optical Materials}, volume = {9}, journal = {Advanced Optical Materials}, number = {13}, doi = {10.1002/adom.202100126}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-239814}, year = {2021}, abstract = {Bloch oscillations are a phenomenon well known from quantum mechanics where electrons in a lattice experience an oscillatory motion in the presence of an electric field gradient. Here, the authors report on Bloch oscillations of hybrid light-matter particles, called exciton-polaritons (polaritons), being confined in an array of coupled microcavity waveguides. To this end, the waveguide widths and their mutual couplings are carefully designed such that a constant energy gradient is induced perpendicular to the direction of motion of the propagating polaritons. This technique allows us to directly observe and study Bloch oscillations in real- and momentum-space. Furthermore, the experimental findings are supported by numerical simulations based on a modified Gross-Pitaevskii approach. This work provides an important transfer of basic concepts of quantum mechanics to integrated solid state devices, using quantum fluids of light.}, language = {en} } @article{WrońskiWyborskiMusiałetal.2021, author = {Wroński, Piotr Andrzej and Wyborski, Paweł and Musiał, Anna and Podemski, Paweł and Sęk, Grzegorz and H{\"o}fling, Sven and Jabeen, Fauzia}, title = {Metamorphic Buffer Layer Platform for 1550 nm Single-Photon Sources Grown by MBE on (100) GaAs Substrate}, series = {Materials}, volume = {14}, journal = {Materials}, number = {18}, issn = {1996-1944}, doi = {10.3390/ma14185221}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-246145}, year = {2021}, abstract = {We demonstrate single-photon emission with a low probability of multiphoton events of 5\% in the C-band of telecommunication spectral range of standard silica fibers from molecular beam epitaxy grown (100)-GaAs-based structure with InAs quantum dots (QDs) on a metamorphic buffer layer. For this purpose, we propose and implement graded In content digitally alloyed InGaAs metamorphic buffer layer with maximal In content of 42\% and GaAs/AlAs distributed Bragg reflector underneath to enhance the extraction efficiency of QD emission. The fundamental limit of the emission rate for the investigated structures is 0.5 GHz based on an emission lifetime of 1.95 ns determined from time-resolved photoluminescence. We prove the relevance of a proposed technology platform for the realization of non-classical light sources in the context of fiber-based quantum communication applications.}, language = {en} } @article{MuellerGraetzBallesetal.2021, author = {M{\"u}ller, Dominik and Graetz, Jonas and Balles, Andreas and Stier, Simon and Hanke, Randolf and Fella, Christian}, title = {Laboratory-Based Nano-Computed Tomography and Examples of Its Application in the Field of Materials Research}, series = {Crystals}, volume = {11}, journal = {Crystals}, number = {6}, issn = {2073-4352}, doi = {10.3390/cryst11060677}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-241048}, year = {2021}, abstract = {In a comprehensive study, we demonstrate the performance and typical application scenarios for laboratory-based nano-computed tomography in materials research on various samples. Specifically, we focus on a projection magnification system with a nano focus source. The imaging resolution is quantified with common 2D test structures and validated in 3D applications by means of the Fourier Shell Correlation. As representative application examples from nowadays material research, we show metallization processes in multilayer integrated circuits, aging in lithium battery electrodes, and volumetric of metallic sub-micrometer fillers of composites. Thus, the laboratory system provides the unique possibility to image non-destructively structures in the range of 170-190 nanometers, even for high-density materials.}, language = {en} } @phdthesis{Scheuermann2021, author = {Scheuermann, Julian}, title = {Interbandkaskadenlaser f{\"u}r Anwendungen in der Absorptionsspektroskopie}, doi = {10.25972/OPUS-25179}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-251797}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Das Ziel dieser Arbeit war die Entwicklung und Weiterentwicklung von Laserlichtquellen basierend auf der Interbandkaskadentechnologie in einem Wellenl{\"a}ngenbereich von ca. 3 bis 6 µm. Der Fokus lag dabei auf der Entwicklung von Kantenemitter-Halbleiterlasern, welche bei verschiedensten Emissionswellenl{\"a}ngen erfolgreich hergestellt werden konnten. Dabei wurde auf jeweilige Herausforderungen eingegangen, welche entweder durch die Herstellung selbst oder der anwendungstechnischen Zielsetzung bedingt war. Im Rahmen dieser Arbeit wurden verschiedene, spektral einzelmodige Halbleiterlaser im angesprochenen Wellenl{\"a}ngenbereich entwickelt und hergestellt. Basierend auf dem jeweiligen Epitaxiematerial und der angestrebten Emissionswellenl{\"a}nge wurden Simulationen der optischen Lasermode durchgef{\"u}hrt und die grundlegenden f{\"u}r die Herstellung notwendigen Parameter bestimmt und experimentell umgesetzt. Des Weiteren wurden die verwendeten Verfahren f{\"u}r den jeweiligen Herstellungsprozess angepasst und optimiert. Das umfasst die in den ersten Kapiteln beschriebenen Schritte wie optische Lithografie, Elektronenstrahllithografie, reaktives Trocken{\"a}tzen und verschiedene Arten der Materialdeposition. Mit einer Emissionswellenl{\"a}nge von 2,8 µm wurde beispielsweise der bislang kurzwelligste bei Raumtemperatur im Dauerstrichbetrieb betriebene einzelmodige Interbandkaskadenlaser hergestellt. Dessen Leistungsmerkmale sind mit Diodenlasern im entsprechenden Emissionsbereich vergleichbar. Somit erg{\"a}nzt die Interbandkaskadentechnologie bestehende Technologien nahtlos und es ist eine l{\"u}ckenlose Wellenl{\"a}ngenabdeckung bis in den mittleren Infrarotbereich m{\"o}glich. Je nach Herstellungsprozess wurde außerdem auf die verteilte R{\"u}ckkopplung eingegangen und die Leistungsf{\"a}higkeit des verwendeten Metallgitterkonzeptes anhand von Messungen an spektral einzelmodigen Bauteile aufgezeigt. Es wurden aber auch die je nach Zielsetzung unterschiedlichen Herausforderungen aufgezeigt und diskutiert. F{\"u}r eine Anwendung wurden spezielle Laserchips mit zwei einzelmodigen Emissionswellenl{\"a}ngen bei 3928 nm und 4009 nm entwickelt. Die beiden Wellenl{\"a}ngen sind f{\"u}r die Detektion von Schwefeldioxid und Schwefelwasserstoff geeignet, welche zur {\"U}berwachung und Optimierung der Schwefelgewinnung durch das Claus-Verfahren notwendig sind. Bei der Umsetzung wurden auf einzelnen Chips zwei Laseremitter in einem Abstand von 70 µm platziert und mit je einem Metallgitter versehen. Das verwendete Epitaxiematerial war so konzipiert, dass es optimal f{\"u}r beide Zielwellenl{\"a}ngen verwendet werden kann. Die geforderten Eigenschaften wurden erf{\"u}llt und die Bauteile konnten erfolgreich hergestellt werden. Die Emissionseigenschaften und das spektrale Verhalten wurde bei beiden Zielwellenl{\"a}ngen bestimmt. Einzeln betrachtet erf{\"u}llen beide Emitter die notwendigen Eigenschaften um f{\"u}r spektroskopische Anwendungen eingesetzt werden zu k{\"o}nnen. Erg{\"a}nzend wurde zum einen das Abstimmverhalten der Emissionswellenl{\"a}nge in Abh{\"a}ngigkeit der Modulationsfrequenz des Betriebsstromes untersucht und zus{\"a}tzlich die thermische Abh{\"a}ngigkeit der Betriebsparameter beider Kan{\"a}le zueinander bestimmt. Diese Abh{\"a}ngigkeit ist f{\"u}r eine simultane Messung mit beiden Kan{\"a}len notwendig. Das Konzept mit mehreren Stegwellenleitern pro Laserchip wurde in einem weiteren Fall noch st{\"a}rker ausgearbeitet. Denn je nach Komplexit{\"a}t eines Gasgemisches sind zur Bestimmung der einzelnen Komponenten mehr Messpunkte bzw. Wellenl{\"a}ngen notwendig. Im zweiten Fall ist die Analyse der Kohlenwasserstoffe Methan, Ethan, Propan, Butan, Iso-Butan, Pentan und Iso-Pentan von Interesse, welche als Hauptbestandteile von Erdgas z.B. in Erdgasaufbereitungsanlagen oder zur Bestimmung des Heizwertes analysiert werden m{\"u}ssen. Die genannten Kohlenwasserstoffe zeigen ein starkes Absorptionsverhalten im Wellenl{\"a}ngenbereich von 3,3 bis 3,5 µm. Auf dem entsprechend angepassten Interbandkaskadenmaterial wurden Bauteile mit neun Wellenleitern pro Laserchip hergestellt. Mithilfe der neun einzelmodigen Emissionskan{\"a}le konnte ein Bereich von bis zu 190 nm (21 meV, 167 cm-1) adressiert werden. Außerdem wurde der sich mit zunehmender Wellenl{\"a}nge {\"a}ndernde Schichtaufbau und dessen Einfluss auf die Bauteileigenschaften diskutiert. Die Leistungsdaten der langwelligsten Epitaxie waren im Vergleich deutlich schw{\"a}cher. Um diesen Nachteil zu kompensieren, wurde eine spezielle Wellenleitergeometrie mit doppeltem Steg genutzt. Die Eigenschaften des Konzeptes wurden zuerst mittels Simulation untersucht und ein entsprechendes Herstellungsverfahren entwickelt. Mit der Simulation als Grundlage wurden die verschiedenen Prozessparameter {\"u}ber mehrere Prozessl{\"a}ufe iterativ optimiert und somit die Performance der Laser verbessert. Auch mit diesem Verfahren konnte ausreichende Kopplung an das Metallgitter erzielt werden. Abschließend wurden mit diesem Herstellungsverfahren einzelmodige Laser im Wellenl{\"a}ngenbereich von 5,9 bis {\"u}ber 6 Mikrometern realisiert. Diese Laser emittierten im Dauerstrichbetrieb bei einer maximalen Betriebstemperatur von -2 °C. Insgesamt wurde anhand der im Rahmen dieser Arbeit entwickelten Bauteilen und de ren Charakterisierung gezeigt, dass diese die Anforderungen von TLAS Anwendungen erf{\"u}llen. Jedoch konnte nur auf einen Teil der M{\"o}glichkeiten eingegangen werden, den die Interbandkaskadentechnologie bietet, denn die angesprochenen Einsatzgebiete stellen nur einzelne grundlegende M{\"o}glichkeiten dieser Technologie mit Schwerpunkt auf laserbasierte Lichtquellen dar. Zusammenfassend kann allerdings gesagt werden, dass sich die Interbandkaskadentechnologie etabliert hat. Gerade durch die gezeigten Leistungsdaten bei den Wellenl{\"a}ngen um 2,9 µm, 3,4 µm und 4,0 µm im Dauerstrichbetrieb bei Raumtemperatur wird ersichtlich, dass im Bereich der Sensorik die ICL Technologie in Bezug auf niedriger Strom- bzw. Leistungsaufnahme quasi konkurrenzlos ist. Sicherlich werden die Anwendungsgebiete in Zukunft noch vielf{\"a}ltiger. Denn es sind auf jeden Fall weitere Fortschritte in Richtung h{\"o}herer Emissionswellenl{\"a}ngen, deutlich h{\"o}herer Betriebstemperaturen, verbreiterte Emissionsbereiche oder g{\"a}nzlich andere Bauteil Konzepte wie z.B. f{\"u}r Frequenzk{\"a}mme bzw. Terahertz Anwendungen zu erwarten. Diese Entwicklung betrifft nicht nur den Einsatz als Lichtquelle, denn auch Interbandkaskadendetektoren bzw. Solarzellen wurden schon realisiert und werden weiterentwickelt.}, subject = {Halbleiterlaser}, language = {de} } @phdthesis{Leisegang2021, author = {Leisegang, Markus}, title = {Eine neue Methode zur Detektion ballistischen Transports im Rastertunnelmikroskop: Die Molekulare Nanosonde}, doi = {10.25972/OPUS-25076}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-250762}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Verlustarmer Ladungstr{\"a}gertransport ist f{\"u}r die Realisierung effizienter und kleiner elektronischer Bauteile von großem Interesse. Dies hilft entstehende W{\"a}rme zu minimieren und den Energieverbrauch gleichzeitig zu reduzieren. Einzelne Streuprozesse, die den Verlust bei Ladungstr{\"a}gertransport bestimmen, laufen jedoch auf L{\"a}ngenskalen von Nano- bis Mikrometern ab. Um diese detailliert untersuchen zu k{\"o}nnen, bedarf es Messmethoden mit hoher zeitlicher oder {\"o}rtlicher Aufl{\"o}sung. F{\"u}r Letztere gibt es wenige etablierte Experimente, h{\"a}ufig basierend auf der Rastertunnelmikroskopie, welche jedoch verschiedenen Einschr{\"a}nkungen unterliegen. Um die M{\"o}glichkeiten der Detektion von Ladungstr{\"a}gertransport auf Distanzen der mittleren freien Wegl{\"a}nge und damit im ballistischen Regime zu verbessern, wurde im Rahmen dieser Dissertation die Molekulare Nanosonde charakterisiert und etabliert. Diese Messmethode nutzt ein einzelnes Molek{\"u}l als Detektor f{\"u}r Ladungstr{\"a}ger, welche mit der Sondenspitze des Rastertunnelmikroskops (RTM) wenige Nanometer entfernt vom Molek{\"u}l in das untersuchte Substrat injiziert werden. Die hohe Aufl{\"o}sung des RTM in Kombination mit der geringen Ausdehnung des molekularen Detektors erm{\"o}glicht dabei atomare Kontrolle von Transportpfaden {\"u}ber wenige Nanometer. Der erste Teil dieser Arbeit widmet sich der Charakterisierung der Molekularen Nanosonde. Hierf{\"u}r werden zun{\"a}chst die elektronischen Eigenschaften dreier Phthalocyanine mittels Rastertunnelspektroskpie untersucht, welche im Folgenden zur Charakterisierung des Molek{\"u}ls als Detektor Anwendung finden. Die anschließende Analyse der Potentiallandschaft der Tautomerisation von H2Pc und HPc zeigt, dass die NH- Streckschwinung einem effizienten Schaltprozess zu Grunde liegt. Darauf basierend wird der Einfluss der Umgebung anhand von einzelnen Adatomen sowie des Substrats selbst auf den molekularen Schalter analysiert. In beiden F{\"a}llen zeigt sich eine signifikante {\"A}nderung der Potentiallandschaft der Tautomerisation. Anschließend wird der Einfluss geometrischer Eigenschaften des Molek{\"u}ls selbst untersucht, wobei sich eine Entkopplung vom Substrat auf Grund von dreidimensionalen tert-Butyl-Substituenten ergibt. Zus{\"a}tzlich zeigt sich bei dem Vergleich von Naphthalocyanin zu Phthalocyanin der Einfluss lateraler Ausdehnung auf die Detektionsfl{\"a}che, was einen nicht-punktf{\"o}rmigen Detektor best{\"a}tigt. Im letzten Abschnitt werden zwei Anwendungen der Molekularen Nanosonde pr{\"a}sentiert. Zun{\"a}chst wird mit Phthalocyanin auf Ag(111) demonstriert, dass die Interferenz von ballistischen Ladungstr{\"a}gern auf Distanzen von wenigen Nanometern mit dieser Technik detektierbar ist. Im zweiten Teil zeigt sich, dass der ballistische Transport auf einer Pd(110)-Oberfl{\"a}che durch die anisotrope Reihenstruktur auf atomarer Skala moduliert wird.}, subject = {Rastertunnelmikroskopie}, language = {de} } @article{BunzmannKrugmannWeissenseeletal.2021, author = {Bunzmann, Nikolai and Krugmann, Benjamin and Weissenseel, Sebastian and Kudriashova, Liudmila and Ivaniuk, Khrystyna and Stakhira, Pavlo and Cherpak, Vladyslav and Chapran, Marian and Grybauskaite-Kaminskiene, Gintare and Grazulevicius, Juozas Vidas and Dyakonov, Vladimir and Sperlich, Andreas}, title = {Spin- and Voltage-Dependent Emission from Intra- and Intermolecular TADF OLEDs}, series = {Advanced Electronic Materials}, volume = {7}, journal = {Advanced Electronic Materials}, number = {3}, doi = {10.1002/aelm.202000702}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-224434}, year = {2021}, abstract = {Organic light emitting diodes (OLEDs) based on thermally activated delayed fluorescence (TADF) utilize molecular systems with a small energy splitting between singlet and triplet states. This can either be realized in intramolecular charge transfer states of molecules with near-orthogonal donor and acceptor moieties or in intermolecular exciplex states formed between a suitable combination of individual donor and acceptor materials. Here, 4,4′-(9H,9′H-[3,3′-bicarbazole]-9,9′-diyl)bis(3-(trifluoromethyl) benzonitrile) (pCNBCzoCF\(_{3}\)) is investigated, which shows intramolecular TADF but can also form exciplex states in combination with 4,4′,4′′-tris[phenyl(m-tolyl)amino]triphenylamine (m-MTDATA). Orange emitting exciplex-based OLEDs additionally generate a sky-blue emission from the intramolecular emitter with an intensity that can be voltage-controlled. Electroluminescence detected magnetic resonance (ELDMR) is applied to study the thermally activated spin-dependent triplet to singlet up-conversion in operating devices. Thereby, intermediate excited states involved in OLED operation can be investigated and the corresponding activation energy for both, intra- and intermolecular based TADF can be derived. Furthermore, a lower estimate is given for the extent of the triplet wavefunction to be ≥ 1.2 nm. Photoluminescence detected magnetic resonance (PLDMR) reveals the population of molecular triplets in optically excited thin films. Overall, the findings allow to draw a comprehensive picture of the spin-dependent emission from intra- and intermolecular TADF OLEDs.}, language = {en} } @phdthesis{EliasdosSantos2021, author = {Elias dos Santos, Graciely}, title = {Spin-Orbit Torques and Galvanomagnetic Effects Generated by the 3D Topological Insulator HgTe}, doi = {10.25972/OPUS-24797}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-247971}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {In meiner Dissertation besch{\"a}ftigte ich mich mit der Frage, ob der 3D topologische Isolator Quecksilbertellurid (3D TI HgTe) ein geeignetes Material f{\"u}r Spintronik-Anwendungen ist. Wir untersuchten Spin-Bahn-Drehmomente, die auf Elektronen beim Tunneln zwischen HgTe und einem angrenzenden Ferromagneten (Permalloy) einwirken. Zun{\"a}chst setzten wir die Methode der Ferromagnetresonanz (SOT-FMR) f{\"u}r diese Untersuchungen ein. Im ersten Teil der Dissertation werden die Leser in die mathematische Beschreibung von Spin- Bahn-Drehmomenten in einem Hybridsystem bestehend aus topologischem Isolator (TI) und Ferromagnet (FM) eingef{\"u}hrt. Des Weiteren werden die Probenherstellung und der Messaufbau f{\"u}r SOT-FMR Messungen besprochen. Unsere SOT-FMR Messungen ergaben, dass bei tiefen Temperaturen (T = 4.2 K) die Normalkomponente (bezogen auf der TI-Oberfl{\"a}che) des Drehmoments groß war. Bei Raumtemperatur konnten im Signal beide Komponenten (parallel und normal zur TI-Oberfl{\"a}che) beobachtet werden. Aus der Symmetrie der Mixing-Spannung (Abbildungen 3.14 und 3.15) schlossen wir, dass 3D TI HgTe ein Spin-Bahn-Drehmoment auf das Elektronensystem des Permalloys {\"u}bertr{\"a}gt. Unsere Untersuchungen zeigten dar{\"u}ber hinaus, dass die Effizienz dieser {\"U}bertragung mit der anderer vorhandener topologischen Isolatoren vergleichbar ist (siehe Abb. 3.17). Abschließend wurden parasit{\"a}re Effekte bei der Absch{\"a}tzung des Spin-Bahn-Drehmoments bzw. andere Interpretationen des Messsignals und seiner Komponenten (z.B., Thermospannungen) ausf{\"u}hrlich diskutiert. Obwohl die hier gezeigten Ergebnisse vermehrt darauf hinweisen, dass der 3D TI HgTe m{\"o}glicherweise effizient f{\"u}r die Anwendung von Spin-Drehmomenten in angrezenden Ferromagneten ist [1], wird dem Leser weiderholt klargemacht, dass parasit{\"a}re Effekte eventuelle das korrekte Schreiben und Lesen der Information in Ferromagneten verunreignigt. Diese sollten auch bei der Interpretation von publizierten Resultaten besonders hohen Spin-Bahn-Drehmoment{\"u}bertragungen in der Literatur ber{\"u}cksichtigt werden [1-3]. Die Nachteile der SOT-FMR-Messmethode f{\"u}hrten zu einerWeiterentwicklung unseres Messkonzepts, bei dem der Ferromagnet durch eine Spin-Valve-Struktur ersetzt wurde. In dieser Messanordnung ist der Stromfluss durch den 3D TI im Gegensatz zu den vorangegangenen Messungen bekannt und die Widerstands{\"a}nderung der Spin-Valve-Struktur kann durch den GMR-Effekt ausgelesen werden. Die Ausrichtung der Magnetisierung des Ferromagneten in den SOT-FMR-Experimenten erforderte es, ein magnetisches Feld von bis zu 300 mT parallel zur TI-Oberfl{\"a}che anzulegen. Motiviert durch diesen Umstand, untersuchten wir den Einfluss eines parallelen Magnetfelds auf den Magnetowiderstand in 3D TI HgTe. Die {\"u}berraschenden Resultate dieser Messungen werden im zweiten Teil der Dissertation beschrieben. Obwohl nichtmagnetisches Quecksilbertellurid untersucht wurde, oszillierte der transversale Magnetowiderstand (Rxy) mit dem Winkel � zwischen der Magnetfeldrichtung (parallel zur Oberfl{\"a}che) und der elektrischen Stromflussrichtung im topologischen Isolator. Dieser Effekt ist eine typische Eigenschaft von ferromagnetischen Materialien und wird planarer Hall-Effekt (PHE) genannt[4, 5]. Magnetowiderstands- (MR-)Oszillationen wurden ebenfalls sowohl im L{\"a}ngswiderstand (Rxx) und im transversalen Widerstand (Rxy) {\"u}ber einen weiten Bereich von magnetischen Feldst{\"a}rken und Ladungstr{\"a}gerdichten des topologischen Isolators beobachtet. Der PHE wurde bereits zuvor in einem anderen TI-Material (Bi2-xSbxTe3) beschrieben [6]. Als physikalischer Mechanismus wurde von den Autoren Elektronenstreuung an magnetisch polarisierten Streuzentren vorgeschlagen. Wir diskutierten sowohl diesen Erkl{\"a}rungsansatz als auch andere Theorievorschl{\"a}ge in der Literatur [7, 8] kritisch. In dieser Doktorarbeit haben wir versucht, der PHE des 3D TI HgTe durch die Asymmetrie in der Bandstruktur dieses Materials zu erkl{\"a}ren. In k.p Bandstrukturrechnungen mit einer 6-Orbital-Basis zeigten wir, dass das Zwischenspiel von Rashba- und Dresselhaus-Spin-Bahn- Wechselwirkung mit dem magnetischen Feld parallel zur TI-Oberfl{\"a}che zu einer Verformung der Fermikontur des Valenzbands von 3D TI-HgTe f{\"u}hrt, welche ihrerseits eine Anisotropie des Leitf{\"a}higkeit bedingt. Die ben{\"o}tigten Magnetfeldst{\"a}rken in diesem Modell waren mit bis zu 40 T jedoch etwa eine Gr{\"o}ßenordnung gr{\"o}ßer als jene in unseren Experimenten. Des Weiteren lieferte eine direkte Berechnung der Zustandsdichten f{\"u}r Bin k I und Bin ? I bisher keine klaren Resultate. Die komplizierte Abh{\"a}ngigkeit der Rashba-Spin-Bahn-Kopplung f{\"u}r p-leitendes HgTe [9] machte es außerdem schwierig, diesen Term in die Bandstrukturrechnung zu inkludieren. Trotz umfangreicher Bem{\"u}hungen, den Ursprung der galvanomagnetischen Effekte im 3D TI HgTe zu verstehen, konnte in dieser Arbeit der Mechanismus des PHE und der MR-Oszillationen nicht eindeutig bestimmt werden. Es gelang jedoch, einige aus der Literatur bekannte Theorien f{\"u}r den PHE und die MR-Oszillationseffekte in topologischen Isolatoren auszuschließen. Die Herausforderung, eine vollst{\"a}ndige theoretische Beschreibung zu entwickeln, die allen experimentellen Aspekten (PHE, Gatespannungsabh{\"a}ngigkeit und MR-Oszillationen) gerecht wird, bleibt weiter bestehen. Abschließend m{\"o}chte die Autorin ihre Hoffnung ausdr{\"u}cken, den Lesern die Komplexit{\"a}t der Fragestellung n{\"a}her gebracht zu haben und sie in die Kunst elektrischer Messungen an topologischen Isolatoren bei angelegtem parallelem Magnetfeld initiiert zu haben.}, language = {en} } @phdthesis{Sochor2021, author = {Sochor, Benedikt}, title = {Aggregation behavior of Pluronic P123 in bulk solution and under confinement at elevated temperatures near its cloud point}, doi = {10.25972/OPUS-24607}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-246070}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {This thesis aims to investigate the form-phase diagram of aqueous solutions of the triblock copolymer Pluronic P123 focusing on its high-temperature phases. P123 is based on polyethylene as well as polypropylene oxide blocks and shows a variety of di erent temperaturedependent micelle morphologies or even lyotropic liquid crystal phases in aqueous solutions. Besides the already well-studied spherical aggregates at intermediate temperatures, the size and internal structure of both worm-like and lamellar micelles, which appear near the cloud point, is determined using light, neutron and X-ray scattering. By combining the results of time-resolved dynamic light as well as small-angle neutron and X-ray scattering experiments, the underlying structural changes and kinetics of the sphere-to-worm transition were studied supporting the random fusion process, which is proposed in literature. For temperatures near the cloud point, it was observed that aqueous P123 solutions below the critical crystallization concentration gelate after several hours, which is linked to the presence and structure of polymeric surface layers on the sample container walls as shown by neutron re ectometry measurements. Using a hierarchical model for the lamellar micelles including their periodicity as well as domain and overall size, it is possible to unify the existing results in literature and propose a direct connection between the near-surface and bulk properties of P123 solutions at temperatures near the cloud point.}, subject = {Weiche Materie}, language = {en} } @phdthesis{Swirski2021, author = {Swirski, Thorben}, title = {Studies on the Effect of Gas Contaminations in Micromegas Detectors and Production of Micromegas Detectors for the New Small Wheel of the ATLAS Detector}, doi = {10.25972/OPUS-24640}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-246405}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {This work consists of two parts. On the one hand, it describes simulation and measurement of the effect of contaminations of the detector gas on the performance of particle detectors, with special focus on Micromegas detectors. On the other hand, it includes the setup of a production site for the finalization of drift panels which are going to be used in the ATLAS NSW. The first part augments these two parts to give an introduction into the theoretical foundations of gaseous particle detectors.}, subject = {Gasionisationsdetektor}, language = {en} } @article{AndelovicWinterJakobetal.2021, author = {Andelovic, Kristina and Winter, Patrick and Jakob, Peter Michael and Bauer, Wolfgang Rudolf and Herold, Volker and Zernecke, Alma}, title = {Evaluation of plaque characteristics and inflammation using magnetic resonance imaging}, series = {Biomedicines}, volume = {9}, journal = {Biomedicines}, number = {2}, issn = {2227-9059}, doi = {10.3390/biomedicines9020185}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-228839}, year = {2021}, abstract = {Atherosclerosis is an inflammatory disease of large and medium-sized arteries, characterized by the growth of atherosclerotic lesions (plaques). These plaques often develop at inner curvatures of arteries, branchpoints, and bifurcations, where the endothelial wall shear stress is low and oscillatory. In conjunction with other processes such as lipid deposition, biomechanical factors lead to local vascular inflammation and plaque growth. There is also evidence that low and oscillatory shear stress contribute to arterial remodeling, entailing a loss in arterial elasticity and, therefore, an increased pulse-wave velocity. Although altered shear stress profiles, elasticity and inflammation are closely intertwined and critical for plaque growth, preclinical and clinical investigations for atherosclerosis mostly focus on the investigation of one of these parameters only due to the experimental limitations. However, cardiovascular magnetic resonance imaging (MRI) has been demonstrated to be a potent tool which can be used to provide insights into a large range of biological parameters in one experimental session. It enables the evaluation of the dynamic process of atherosclerotic lesion formation without the need for harmful radiation. Flow-sensitive MRI provides the assessment of hemodynamic parameters such as wall shear stress and pulse wave velocity which may replace invasive and radiation-based techniques for imaging of the vascular function and the characterization of early plaque development. In combination with inflammation imaging, the analyses and correlations of these parameters could not only significantly advance basic preclinical investigations of atherosclerotic lesion formation and progression, but also the diagnostic clinical evaluation for early identification of high-risk plaques, which are prone to rupture. In this review, we summarize the key applications of magnetic resonance imaging for the evaluation of plaque characteristics through flow sensitive and morphological measurements. The simultaneous measurements of functional and structural parameters will further preclinical research on atherosclerosis and has the potential to fundamentally improve the detection of inflammation and vulnerable plaques in patients.}, language = {en} } @phdthesis{Hammer2021, author = {Hammer, Sebastian Tobias}, title = {Influence of Crystal Structure on Excited States in Crystalline Organic Semiconductors}, doi = {10.25972/OPUS-24401}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-244019}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {This thesis focused on the influence of the underlying crystal structure and hence, of the mutual molecular orientation, on the excited states in ordered molecular aggregates. For this purpose, two model systems have been investigated. In the prototypical donor-acceptor complex pentacene-perfluoropentacene (PEN-PFP) the optical accessibility of the charge transfer state and the possibility to fabricate highly defined interfaces by means of single crystal templates enabled a deep understanding of the spatial anisotropy of the charge transfer state formation. Transferring the obtained insights to the design of prototypical donor-acceptor devices, the importance of interface control to minimize the occurrence of charge transfer traps and thereby, to improve the device performance, could be demonstrated. The use of zinc phthalocyanine (ZnPc) allowed for the examination of the influence of molecular packing on the excited electronic states without a change in molecular species by virtue of its inherent polymorphism. Combining structural investigations, optical absorption and emission spectroscopy, as well as Franck-Condon modeling of emission spectra revealed the nature of the optical excited state emission in relation to the structural \(\alpha \) and \(\beta \) phase over a wide temperature range from 4 K to 300 K. As a results, the phase transition kinetics of the first order \(\alpha \rightarrow \beta\) phase transition were characterized in depth and applied to the fabrication of prototypical dual luminescent OLEDs.}, subject = {Organischer Halbleiter}, language = {en} }