@article{WallaceLeonhardt2015, author = {Wallace, Helen Margaret and Leonhardt, Sara Diana}, title = {Do Hybrid Trees Inherit Invasive Characteristics? Fruits of Corymbia torelliana X C. citriodora Hybrids and Potential for Seed Dispersal by Bees}, series = {PLoS One}, volume = {10}, journal = {PLoS One}, number = {9}, doi = {10.1371/journal.pone.0138868}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-141777}, pages = {e0138868}, year = {2015}, abstract = {Tree invasions have substantial impacts on biodiversity and ecosystem functioning, and trees that are dispersed by animals are more likely to become invasive. In addition, hybridisation between plants is well documented as a source of new weeds, as hybrids gain new characteristics that allow them to become invasive. Corymbia torelliana is an invasive tree with an unusual animal dispersal mechanism: seed dispersal by stingless bees, that hybridizes readily with other species. We examined hybrids between C. torelliana and C. citriodora subsp. citriodora to determine whether hybrids have inherited the seed dispersal characteristics of C. torelliana that allow bee dispersal. Some hybrid fruits displayed the characteristic hollowness, resin production and resin chemistry associated with seed dispersal by bees. However, we did not observe bees foraging on any hybrid fruits until they had been damaged. We conclude that C. torelliana and C. citriodora subsp. citriodora hybrids can inherit some fruit characters that are associated with dispersal by bees, but we did not find a hybrid with the complete set of characters that would enable bee dispersal. However, around 20,000 hybrids have been planted in Australia, and ongoing monitoring is necessary to identify any hybrids that may become invasive.}, language = {en} } @article{ElkonLoayzaPuchKorkmazetal.2015, author = {Elkon, Ran and Loayza-Puch, Fabricio and Korkmaz, Gozde and Lopes, Rui and van Breugel, Pieter C and Bleijerveld, Onno B and Altelaar, AF Maarten and Wolf, Elmar and Lorenzin, Francesca and Eilers, Martin and Agami, Reuven}, title = {Myc coordinates transcription and translation to enhance transformation and suppress invasiveness}, series = {EMBO reports}, volume = {16}, journal = {EMBO reports}, number = {12}, doi = {10.15252/embr.201540717}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-150373}, pages = {1723-1736}, year = {2015}, abstract = {c-Myc is one of the major human proto-oncogenes and is often associated with tumor aggression and poor clinical outcome. Paradoxically, Myc was also reported as a suppressor of cell motility, invasiveness, and metastasis. Among the direct targets of Myc are many components of the protein synthesis machinery whose induction results in an overall increase in protein synthesis that empowers tumor cell growth. At present, it is largely unknown whether beyond the global enhancement of protein synthesis, Myc activation results in translation modulation of specific genes. Here, we measured Myc-induced global changes in gene expression at the transcription, translation, and protein levels and uncovered extensive transcript-specific regulation of protein translation. Particularly, we detected a broad coordination between regulation of transcription and translation upon modulation of Myc activity and showed the connection of these responses to mTOR signaling to enhance oncogenic transformation and to the TGFβ pathway to modulate cell migration and invasiveness. Our results elucidate novel facets of Myc-induced cellular responses and provide a more comprehensive view of the consequences of its activation in cancer cells.}, language = {en} } @article{KarulinCaspellDittrichetal.2015, author = {Karulin, Alexey Y. and Caspell, Richard and Dittrich, Marcus and Lehmann, Paul V.}, title = {Normal distribution of CD8+ T-cell-derived ELISPOT counts within replicates justifies the reliance on parametric statistics for identifying positive responses}, series = {Cells}, volume = {4}, journal = {Cells}, number = {1}, doi = {10.3390/cells4010096}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-149968}, pages = {96-111}, year = {2015}, abstract = {Accurate assessment of positive ELISPOT responses for low frequencies of antigen-specific T-cells is controversial. In particular, it is still unknown whether ELISPOT counts within replicate wells follow a theoretical distribution function, and thus whether high power parametric statistics can be used to discriminate between positive and negative wells. We studied experimental distributions of spot counts for up to 120 replicate wells of IFN-γ production by CD8+ T-cell responding to EBV LMP2A (426 - 434) peptide in human PBMC. The cells were tested in serial dilutions covering a wide range of average spot counts per condition, from just a few to hundreds of spots per well. Statistical analysis of the data using diagnostic Q-Q plots and the Shapiro-Wilk normality test showed that in the entire dynamic range of ELISPOT spot counts within replicate wells followed a normal distribution. This result implies that the Student t-Test and ANOVA are suited to identify positive responses. We also show experimentally that borderline responses can be reliably detected by involving more replicate wells, plating higher numbers of PBMC, addition of IL-7, or a combination of these. Furthermore, we have experimentally verified that the number of replicates needed for detection of weak responses can be calculated using parametric statistics.}, language = {en} } @article{GamezViruesPerovićGossneretal.2015, author = {G{\´a}mez-Viru{\´e}s, Sagrario and Perović, David J. and Gossner, Martin M. and B{\"o}rschig, Carmen and Bl{\"u}thgen, Nico and de Jong, Heike and Simons, Nadja K. and Klein, Alexandra-Maria and Krauss, Jochen and Maier, Gwen and Scherber, Christoph and Steckel, Juliane and Rothenw{\"o}hrer, Christoph and Steffan-Dewenter, Ingolf and Weiner, Christiane N. and Weisser, Wolfgang and Werner, Michael and Tscharntke, Teja and Westphal, Catrin}, title = {Landscape simplification filters species traits and drives biotic homogenization}, series = {Nature Communications}, volume = {6}, journal = {Nature Communications}, number = {8568}, doi = {10.1038/ncomms9568}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-141925}, year = {2015}, abstract = {Biodiversity loss can affect the viability of ecosystems by decreasing the ability of communities to respond to environmental change and disturbances. Agricultural intensification is a major driver of biodiversity loss and has multiple components operating at different spatial scales: from in-field management intensity to landscape-scale simplification. Here we show that landscape-level effects dominate functional community composition and can even buffer the effects of in-field management intensification on functional homogenization, and that animal communities in real-world managed landscapes show a unified response (across orders and guilds) to both landscape-scale simplification and in-field intensification. Adults and larvae with specialized feeding habits, species with shorter activity periods and relatively small body sizes are selected against in simplified landscapes with intense in-field management. Our results demonstrate that the diversity of land cover types at the landscape scale is critical for maintaining communities, which are functionally diverse, even in landscapes where in-field management intensity is high.}, language = {en} } @article{PaulPauliEhmannetal.2015, author = {Paul, Mila M. and Pauli, Martin and Ehmann, Nadine and Hallermann, Stefan and Sauer, Markus and Kittel, Robert J. and Heckmann, Manfred}, title = {Bruchpilot and Synaptotagmin collaborate to drive rapid glutamate release and active zone differentiation}, series = {Frontiers in Cellular Neuroscience}, volume = {9}, journal = {Frontiers in Cellular Neuroscience}, number = {29}, doi = {10.3389/fncel.2015.00029}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148988}, year = {2015}, abstract = {The active zone (AZ) protein Bruchpilot (Brp) is essential for rapid glutamate release at Drosophila melanogaster neuromuscular junctions (NMJs). Quantal time course and measurements of action potential-waveform suggest that presynaptic fusion mechanisms are altered in brp null mutants (brp\(^{69}\)). This could account for their increased evoked excitatory postsynaptic current (EPSC) delay and rise time (by about 1 ms). To test the mechanism of release protraction at brp\(^{69}\) AZs, we performed knock-down of Synaptotagmin-1 (Syt) via RNAi (syt\(^{KD}\)) in wildtype (wt), brp\(^{69}\) and rab3 null mutants (rab3\(^{rup}\)), where Brp is concentrated at a small number of AZs. At wt and rab3\(^{rup}\) synapses, syt\(^{KD}\) lowered EPSC amplitude while increasing rise time and delay, consistent with the role of Syt as a release sensor. In contrast, syt\(^{KD}\) did not alter EPSC amplitude at brp\(^{69}\) synapses, but shortened delay and rise time. In fact, following syt\(^{KD}\), these kinetic properties were strikingly similar in wt and brp\(^{69}\), which supports the notion that Syt protracts release at brp\(^{69}\) synapses. To gain insight into this surprising role of Syt at brp\(^{69}\) AZs, we analyzed the structural and functional differentiation of synaptic boutons at the NMJ. At tonic type Ib motor neurons, distal boutons contain more AZs, more Brp proteins per AZ and show elevated and accelerated glutamate release compared to proximal boutons. The functional differentiation between proximal and distal boutons is Brp-dependent and reduced after syt\(^{KD}\). Notably, syt\(^{KD}\) boutons are smaller, contain fewer Brp positive AZs and these are of similar number in proximal and distal boutons. In addition, super-resolution imaging via dSTORM revealed that syt\(^{KD}\) increases the number and alters the spatial distribution of Brp molecules at AZs, while the gradient of Brp proteins per AZ is diminished. In summary, these data demonstrate that normal structural and functional differentiation of Drosophila AZs requires concerted action of Brp and Syt.}, language = {en} } @article{ShityakovDandekarFoerster2015, author = {Shityakov, Sergey and Dandekar, Thomas and F{\"o}rster, Carola}, title = {Gene expression profiles and protein-protein interaction network analysis in AIDS patients with HIV-associated encephalitis and dementia}, series = {HIV/AIDS: Research and Palliative Care}, volume = {7}, journal = {HIV/AIDS: Research and Palliative Care}, doi = {10.2147/HIV.S88438}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-149494}, pages = {265-276}, year = {2015}, abstract = {Central nervous system dysfunction is an important cause of morbidity and mortality in patients with human immunodeficiency virus type 1 (HIV-1) infection and acquired immunodeficiency virus syndrome (AIDS). Patients with AIDS are usually affected by HIV-associated encephalitis (HIVE) with viral replication limited to cells of monocyte origin. To examine the molecular mechanisms underlying HIVE-induced dementia, the GSE4755 Affymetrix data were obtained from the Gene Expression Omnibus database and the differentially expressed genes (DEGs) between the samples from AIDS patients with and without apparent features of HIVE-induced dementia were identified. In addition, protein-protein interaction networks were constructed by mapping DEGs into protein-protein interaction data to identify the pathways that these DEGs are involved in. The results revealed that the expression of 1,528 DEGs is mainly involved in the immune response, regulation of cell proliferation, cellular response to inflammation, signal transduction, and viral replication cycle. Heat-shock protein alpha, class A member 1 (HSP90AA1), and fibronectin 1 were detected as hub nodes with degree values >130. In conclusion, the results indicate that HSP90A and fibronectin 1 play important roles in HIVE pathogenesis.}, language = {en} } @article{FalibeneRocesRoessler2015, author = {Falibene, Augustina and Roces, Flavio and R{\"o}ssler, Wolfgang}, title = {Long-term avoidance memory formation is associated with a transient increase in mushroom body synaptic complexes in leaf-cutting ants}, series = {Frontiers in Behavioural Neuroscience}, volume = {9}, journal = {Frontiers in Behavioural Neuroscience}, number = {84}, doi = {10.3389/fnbeh.2015.00084}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148763}, year = {2015}, abstract = {Long-term behavioral changes related to learning and experience have been shown to be associated with structural remodeling in the brain. Leaf-cutting ants learn to avoid previously preferred plants after they have proved harmful for their symbiotic fungus, a process that involves long-term olfactory memory. We studied the dynamics of brain microarchitectural changes after long-term olfactory memory formation following avoidance learning in Acromyrmex ambiguus. After performing experiments to control for possible neuronal changes related to age and body size, we quantified synaptic complexes (microglomeruli, MG) in olfactory regions of the mushroom bodies (MB) at different times after learning. Long-term avoidance memory formation was associated with a transient change in MG densities. Two days after learning, MG density was higher than before learning. At days 4 and 15 after learning when ants still showed plant avoidance MG densities had decreased to the initial state. The structural reorganization of MG triggered by long-term avoidance memory formation clearly differed from changes promoted by pure exposure to and collection of novel plants with distinct odors. Sensory exposure by the simultaneous collection of several, instead of one, non-harmful plant species resulted in a decrease in MG densities in the olfactory lip. We hypothesize that while sensory exposure leads to MG pruning in the MB olfactory lip, the formation of long-term avoidance memory involves an initial growth of new MG followed by subsequent pruning.}, language = {en} } @article{WolfKuonenDandekaretal.2015, author = {Wolf, Beat and Kuonen, Pierre and Dandekar, Thomas and Atlan, David}, title = {DNAseq workflow in a diagnostic context and an example of a user friendly implementation}, series = {BioMed Research International}, journal = {BioMed Research International}, number = {403497}, doi = {10.1155/2015/403497}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-144527}, year = {2015}, abstract = {Over recent years next generation sequencing (NGS) technologies evolved from costly tools used by very few, to a much more accessible and economically viable technology. Through this recently gained popularity, its use-cases expanded from research environments into clinical settings. But the technical know-how and infrastructure required to analyze the data remain an obstacle for a wider adoption of this technology, especially in smaller laboratories. We present GensearchNGS, a commercial DNAseq software suite distributed by Phenosystems SA. The focus of GensearchNGS is the optimal usage of already existing infrastructure, while keeping its use simple. This is achieved through the integration of existing tools in a comprehensive software environment, as well as custom algorithms developed with the restrictions of limited infrastructures in mind. This includes the possibility to connect multiple computers to speed up computing intensive parts of the analysis such as sequence alignments. We present a typical DNAseq workflow for NGS data analysis and the approach GensearchNGS takes to implement it. The presented workflow goes from raw data quality control to the final variant report. This includes features such as gene panels and the integration of online databases, like Ensembl for annotations or Cafe Variome for variant sharing.}, language = {en} } @article{WilliamsChagtaiAlcaideGermanetal.2015, author = {Williams, Richard D. and Chagtai, Tasnim and Alcaide-German, Marisa and Apps, John and Wegert, Jenny and Popov, Sergey and Vujanic, Gordan and Van Tinteren, Harm and Van den Heuvel-Eibrink, Marry M and Kool, Marcel and De Kraker, Jan and Gisselsson, David and Graf, Norbert and Gessler, Manfred and Pritchard-Jones, Kathy}, title = {Multiple mechanisms of MYCN dysregulation in Wilms tumour}, series = {Oncotarget}, volume = {6}, journal = {Oncotarget}, number = {9}, doi = {10.18632/oncotarget.3377}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-143471}, pages = {7232-7243}, year = {2015}, abstract = {Genomic gain of the proto-oncogene transcription factor gene MYCN is associated with poor prognosis in several childhood cancers. Here we present a comprehensive copy number analysis of MYCN in Wilms tumour (WT), demonstrating that gain of this gene is associated with anaplasia and with poorer relapse-free and overall survival, independent of histology. Using whole exome and gene-specific sequencing, together with methylation and expression profiling, we show that MYCN is targeted by other mechanisms, including a recurrent somatic mutation, P44L, and specific DNA hypomethylation events associated with MYCN overexpression in tumours with high risk histologies. We describe parallel evolution of genomic copy number gain and point mutation of MYCN in the contralateral tumours of a remarkable bilateral case in which independent contralateral mutations of TP53 also evolve over time. We report a second bilateral case in which MYCN gain is a germline aberration. Our results suggest a significant role for MYCN dysregulation in the molecular biology of Wilms tumour. We conclude that MYCN gain is prognostically significant, and suggest that the novel P44L somatic variant is likely to be an activating mutation.}, language = {en} } @article{TsaiGrimmChaoetal.2015, author = {Tsai, Yu-Chen and Grimm, Stefan and Chao, Ju-Lan and Wang, Shih-Chin and Hofmeyer, Kerstin and Shen, Jie and Eichinger, Fred and Michalopoulou, Theoni and Yao, Chi-Kuang and Chang, Chih-Hsuan and Lin, Shih-Han and Sun, Y. Henry and Pflugfelder, Gert O.}, title = {Optomotor-blind negatively regulates Drosophila eye development by blocking Jak/STAT signaling}, series = {PLoS ONE}, volume = {10}, journal = {PLoS ONE}, number = {3}, doi = {10.1371/journal.pone.0120236}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-143577}, pages = {e0120236}, year = {2015}, abstract = {Organ formation requires a delicate balance of positive and negative regulators. In Drosophila eye development, wingless (wg) is expressed at the lateral margins of the eye disc and serves to block retinal development. The T-box gene optomotor-blind (omb) is expressed in a similar pattern and is regulated by Wg. Omb mediates part of Wg activity in blocking eye development. Omb exerts its function primarily by blocking cell proliferation. These effects occur predominantly in the ventral margin. Our results suggest that the primary effect of Omb is the blocking of Jak/STAT signaling by repressing transcription of upd which encodes the Jak receptor ligand Unpaired.}, language = {en} } @article{DegenHovestadtMitesseretal.2015, author = {Degen, Tobias and Hovestadt, Thomas and Mitesser, Oliver and H{\"o}lker, Franz}, title = {High female survival promotes evolution of protogyny and xexual conflict}, series = {PLoS ONE}, volume = {10}, journal = {PLoS ONE}, number = {3}, doi = {10.1371/journal.pone.0118354}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-143586}, pages = {e0118354}, year = {2015}, abstract = {Existing models explaining the evolution of sexual dimorphism in the timing of emergence (SDT) in Lepidoptera assume equal mortality rates for males and females. The limiting assumption of equal mortality rates has the consequence that these models are only able to explain the evolution of emergence of males before females, i.e. protandry-the more common temporal sequence of emergence in Lepidoptera. The models fail, however, in providing adaptive explanations for the evolution of protogyny, where females emerge before males, but protogyny is not rare in insects. The assumption of equal mortality rates seems too restrictive for many insects, such as butterflies. To investigate the influence of unequal mortality rates on the evolution of SDT, we present a generalised version of a previously published model where we relax this assumption. We find that longer life-expectancy of females compared to males can indeed favour the evolution of protogyny as a fitness enhancing strategy. Moreover, the encounter rate between females and males and the sex-ratio are two important factors that also influence the evolution of optimal SDT. If considered independently for females and males the predicted strategies can be shown to be evolutionarily stable (ESS). Under the assumption of equal mortality rates the difference between the females' and males' ESS remains typically very small. However, female and male ESS may be quite dissimilar if mortality rates are different. This creates the potential for an 'evolutionary conflict' between females and males. Bagworm moths (Lepidoptera: Psychidae) provide an exemplary case where life-history attributes are such that protogyny should indeed be the optimal emergence strategy from the males' and females' perspectives: (i) Female longevity is considerably larger than that of males, (ii) encounter rates between females and males are presumably low, and (iii) females mate only once. Protogyny is indeed the general mating strategy found in the bagworm family.}, language = {en} } @article{AdolfiCarreiraJesusetal.2015, author = {Adolfi, Mateus C. and Carreira, Ana C. O. and Jesus, L{\´a}zaro W. O. and Bogerd, Jan and Funes, Rejane M. and Schartl, Manfred and Sogayar, Mari C. and Borella, Maria I.}, title = {Molecular cloning and expression analysis of dmrt1 and sox9 during gonad development and male reproductive cycle in the lambari fish, Astyanax altiparanae}, series = {Reproductive Biology and Endocrinology}, volume = {13}, journal = {Reproductive Biology and Endocrinology}, number = {2}, doi = {10.1186/1477-7827-13-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-126486}, year = {2015}, abstract = {Background The dmrt1 and sox9 genes have a well conserved function related to testis formation in vertebrates, and the group of fish presents a great diversity of species and reproductive mechanisms. The lambari fish (Astyanax altiparanae) is an important Neotropical species, where studies on molecular level of sex determination and gonad maturation are scarce. Methods Here, we employed molecular cloning techniques to analyze the cDNA sequences of the dmrt1 and sox9 genes, and describe the expression pattern of those genes during development and the male reproductive cycle by qRT-PCR, and related to histology of the gonad. Results Phylogenetic analyses of predicted amino acid sequences of dmrt1 and sox9 clustered A. altiparanae in the Ostariophysi group, which is consistent with the morphological phylogeny of this species. Studies of the gonad development revealed that ovary formation occurred at 58 days after hatching (dah), 2 weeks earlier than testis formation. Expression studies of sox9 and dmrt1 in different tissues of adult males and females and during development revealed specific expression in the testis, indicating that both genes also have a male-specific role in the adult. During the period of gonad sex differentiation, dmrt1 seems to have a more significant role than sox9. During the male reproductive cycle dmrt1 and sox9 are down-regulated after spermiation, indicating a role of these genes in spermatogenesis. Conclusions For the first time the dmrt1 and sox9 were cloned in a Characiformes species. We show that both genes have a conserved structure and expression, evidencing their role in sex determination, sex differentiation and the male reproductive cycle in A. altiparanae. These findings contribute to a better understanding of the molecular mechanisms of sex determination and differentiation in fish.}, language = {en} } @article{AndronicShirakashiPickeletal.2015, author = {Andronic, Joseph and Shirakashi, Ryo and Pickel, Simone U. and Westerling, Katherine M. and Klein, Teresa and Holm, Thorge and Sauer, Markus and Sukhorukov, Vladimir L.}, title = {Hypotonic Activation of the Myo-Inositol Transporter SLC5A3 in HEK293 Cells Probed by Cell Volumetry, Confocal and Super-Resolution Microscopy}, series = {PLoS One}, volume = {10}, journal = {PLoS One}, number = {3}, doi = {10.1371/journal.pone.0119990}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-126408}, year = {2015}, abstract = {Swelling-activated pathways for myo-inositol, one of the most abundant organic osmolytes in mammalian cells, have not yet been identified. The present study explores the SLC5A3 protein as a possible transporter of myo-inositol in hyponically swollen HEK293 cells. To address this issue, we examined the relationship between the hypotonicity-induced changes in plasma membrane permeability to myo-inositol Pino [m/s] and expression/localization of SLC5A3. Pino values were determined by cell volumetry over a wide tonicity range (100-275 mOsm) in myo-inositol-substituted solutions. While being negligible under mild hypotonicity (200-275 mOsm), Pino grew rapidly at osmolalities below 200 mOsm to reach a maximum of ∼3 nm/s at 100-125 mOsm, as indicated by fast cell swelling due to myo-inositol influx. The increase in Pino resulted most likely from the hypotonicity-mediated incorporation of cytosolic SLC5A3 into the plasma membrane, as revealed by confocal fluorescence microscopy of cells expressing EGFP-tagged SLC5A3 and super-resolution imaging of immunostained SLC5A3 by direct stochastic optical reconstruction microscopy (dSTORM). dSTORM in hypotonic cells revealed a surface density of membrane-associated SLC5A3 proteins of 200-2000 localizations/μm2. Assuming SLC5A3 to be the major path for myo-inositol, a turnover rate of 80-800 myo-inositol molecules per second for a single transporter protein was estimated from combined volumetric and dSTORM data. Hypotonic stress also caused a significant upregulation of SLC5A3 gene expression as detected by semiquantitative RT-PCR and Western blot analysis. In summary, our data provide first evidence for swelling-mediated activation of SLC5A3 thus suggesting a functional role of this transporter in hypotonic volume regulation of mammalian cells.}, language = {en} } @article{WeissSchultz2015, author = {Weiß, Clemens Leonard and Schultz, J{\"o}rg}, title = {Identification of divergent WH2 motifs by HMM-HMM alignments}, series = {BMC Research Notes}, volume = {8}, journal = {BMC Research Notes}, number = {18}, doi = {10.1186/s13104-015-0981-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-126413}, year = {2015}, abstract = {Background The actin cytoskeleton is a hallmark of eukaryotic cells. Its regulation as well as its interaction with other proteins is carefully orchestrated by actin interaction domains. One of the key players is the WH2 motif, which enables binding to actin monomers and filaments and is involved in the regulation of actin nucleation. Contrasting conserved domains, the identification of this motif in protein sequences is challenging, as it is short and poorly conserved. Findings To identify divergent members, we combined Hidden-Markov-Model (HMM) to HMM alignments with orthology predictions. Thereby, we identified nearly 500 proteins containing so far not annotated WH2 motifs. This included shootin-1, an actin binding protein involved in neuron polarization. Among others, WH2 motifs of 'proximal to raf' (ptr)-orthologs, which are described in the literature, but not annotated in genome databases, were identified. Conclusion In summary, we increased the number of WH2 motif containing proteins substantially. This identification of candidate regions for actin interaction could steer their experimental characterization. Furthermore, the approach outlined here can easily be adapted to the identification of divergent members of further domain families.}, language = {en} } @article{LakovicPoethkeHovestadt2015, author = {Lakovic, Milica and Poethke, Hans-Joachim and Hovestadt, Thomas}, title = {Dispersal timing: Emigration of insects living in patchy environments}, series = {PLoS One}, volume = {10}, journal = {PLoS One}, number = {7}, doi = {10.1371/journal.pone.0128672}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-126466}, pages = {e0128672}, year = {2015}, abstract = {Dispersal is a life-history trait affecting dynamics and persistence of populations; it evolves under various known selective pressures. Theoretical studies on dispersal typically assume 'natal dispersal', where individuals emigrate right after birth. But emigration may also occur during a later moment within a reproductive season ('breeding dispersal'). For example, some female butterflies first deposit eggs in their natal patch before migrating to other site(s) to continue egg-laying there. How breeding compared to natal dispersal influences the evolution of dispersal has not been explored. To close this gap we used an individual-based simulation approach to analyze (i) the evolution of timing of breeding dispersal in annual organisms, (ii) its influence on dispersal (compared to natal dispersal). Furthermore, we tested (iii) its performance in direct evolutionary contest with individuals following a natal dispersal strategy. Our results show that evolution should typically result in lower dispersal under breeding dispersal, especially when costs of dispersal are low and population size is small. By distributing offspring evenly across two patches, breeding dispersal allows reducing direct sibling competition in the next generation whereas natal dispersal can only reduce trans-generational kin competition by producing highly dispersive offspring in each generation. The added benefit of breeding dispersal is most prominent in patches with small population sizes. Finally, the evolutionary contests show that a breeding dispersal strategy would universally out-compete natal dispersal.}, language = {en} } @article{GalluzziBravoSanPedroVitaleetal.2015, author = {Galluzzi, L. and Bravo-San Pedro, J. M. and Vitale, I. and Aaronson, S. A. and Abrams, J. M. and Adam, D. and Alnemri, E. S. and Altucci, L. and Andrews, D. and Annicchiarico-Petruzelli, M. and Baehrecke, E. H. and Bazan, N. G. and Bertrand, M. J. and Bianchi, K. and Blagosklonny, M. V. and Blomgren, K. and Borner, C. and Bredesen, D. E. and Brenner, C. and Campanella, M. and Candi, E. and Cecconi, F. and Chan, F. K. and Chandel, N. S. and Cheng, E. H. and Chipuk, J. E. and Cidlowski, J. A. and Ciechanover, A. and Dawson, T. M. and Dawson, V. L. and De Laurenzi, V. and De Maria, R. and Debatin, K. M. and Di Daniele, N. and Dixit, V. M. and Dynlacht, B. D. and El-Deiry, W. S. and Fimia, G. M. and Flavell, R. A. and Fulda, S. and Garrido, C. and Gougeon, M. L. and Green, D. R. and Gronemeyer, H. and Hajnoczky, G. and Hardwick, J. M. and Hengartner, M. O. and Ichijo, H. and Joseph, B. and Jost, P. J. and Kaufmann, T. and Kepp, O. and Klionsky, D. J. and Knight, R. A. and Kumar, S. and Lemasters, J. J. and Levine, B. and Linkermann, A. and Lipton, S. A. and Lockshin, R. A. and L{\´o}pez-Ot{\´i}n, C. and Lugli, E. and Madeo, F. and Malorni, W. and Marine, J. C. and Martin, S. J. and Martinou, J. C. and Medema, J. P. and Meier, P. and Melino, S. and Mizushima, N. and Moll, U. and Mu{\~n}oz-Pinedo, C. and Nu{\~n}ez, G. and Oberst, A. and Panaretakis, T. and Penninger, J. M. and Peter, M. E. and Piacentini, M. and Pinton, P. and Prehn, J. H. and Puthalakath, H. and Rabinovich, G. A. and Ravichandran, K. S. and Rizzuto, R. and Rodrigues, C. M. and Rubinsztein, D. C. and Rudel, T. and Shi, Y. and Simon, H. U. and Stockwell, B. R. and Szabadkai, G. and Tait, S. W. and Tang, H. L. and Tavernarakis, N. and Tsujimoto, Y. and Vanden Berghe, T. and Vandenabeele, P. and Villunger, A. and Wagner, E. F. and Walczak, H. and White, E. and Wood, W. G. and Yuan, J. and Zakeri, Z. and Zhivotovsky, B. and Melino, G. and Kroemer, G.}, title = {Essential versus accessory aspects of cell death: recommendations of the NCCD 2015}, series = {Cell Death and Differentiation}, volume = {22}, journal = {Cell Death and Differentiation}, doi = {10.1038/cdd.2014.137}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-121207}, pages = {58-73}, year = {2015}, abstract = {Cells exposed to extreme physicochemical or mechanical stimuli die in an uncontrollable manner, as a result of their immediate structural breakdown. Such an unavoidable variant of cellular demise is generally referred to as 'accidental cell death' (ACD). In most settings, however, cell death is initiated by a genetically encoded apparatus, correlating with the fact that its course can be altered by pharmacologic or genetic interventions. 'Regulated cell death' (RCD) can occur as part of physiologic programs or can be activated once adaptive responses to perturbations of the extracellular or intracellular microenvironment fail. The biochemical phenomena that accompany RCD may be harnessed to classify it into a few subtypes, which often (but not always) exhibit stereotyped morphologic features. Nonetheless, efficiently inhibiting the processes that are commonly thought to cause RCD, such as the activation of executioner caspases in the course of apoptosis, does not exert true cytoprotective effects in the mammalian system, but simply alters the kinetics of cellular demise as it shifts its morphologic and biochemical correlates. Conversely, bona fide cytoprotection can be achieved by inhibiting the transduction of lethal signals in the early phases of the process, when adaptive responses are still operational. Thus, the mechanisms that truly execute RCD may be less understood, less inhibitable and perhaps more homogeneous than previously thought. Here, the Nomenclature Committee on Cell Death formulates a set of recommendations to help scientists and researchers to discriminate between essential and accessory aspects of cell death.}, language = {en} } @article{BrillMeyerRoessler2015, author = {Brill, Martin F. and Meyer, Anneke and Roessler, Wolfgang}, title = {It takes two—coincidence coding within the dual olfactory pathway of the honeybee}, series = {Frontiers in Physiology}, volume = {6}, journal = {Frontiers in Physiology}, number = {208}, doi = {10.3389/fphys.2015.00208}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-126179}, year = {2015}, abstract = {To rapidly process biologically relevant stimuli, sensory systems have developed a broad variety of coding mechanisms like parallel processing and coincidence detection. Parallel processing (e.g., in the visual system), increases both computational capacity and processing speed by simultaneously coding different aspects of the same stimulus. Coincidence detection is an efficient way to integrate information from different sources. Coincidence has been shown to promote associative learning and memory or stimulus feature detection (e.g., in auditory delay lines). Within the dual olfactory pathway of the honeybee both of these mechanisms might be implemented by uniglomerular projection neurons (PNs) that transfer information from the primary olfactory centers, the antennal lobe (AL), to a multimodal integration center, the mushroom body (MB). PNs from anatomically distinct tracts respond to the same stimulus space, but have different physiological properties, characteristics that are prerequisites for parallel processing of different stimulus aspects. However, the PN pathways also display mirror-imaged like anatomical trajectories that resemble neuronal coincidence detectors as known from auditory delay lines. To investigate temporal processing of olfactory information, we recorded PN odor responses simultaneously from both tracts and measured coincident activity of PNs within and between tracts. Our results show that coincidence levels are different within each of the two tracts. Coincidence also occurs between tracts, but to a minor extent compared to coincidence within tracts. Taken together our findings support the relevance of spike timing in coding of olfactory information (temporal code).}, language = {en} } @article{PaschLinkBecketal.2015, author = {Pasch, Elisabeth and Link, Jana and Beck, Carolin and Scheuerle, Stefanie and Alsheimer, Manfred}, title = {The LINC complex component Sun4 plays a crucial role in sperm head formation and fertility}, series = {Biology Open}, volume = {4}, journal = {Biology Open}, doi = {10.1242/bio.015768}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-125212}, pages = {1792-1802}, year = {2015}, abstract = {LINC complexes are evolutionarily conserved nuclear envelope bridges, physically connecting the nucleus to the peripheral cytoskeleton. They are pivotal for dynamic cellular and developmental processes, like nuclear migration, anchoring and positioning, meiotic chromosome movements and maintenance of cell polarity and nuclear shape. Active nuclear reshaping is a hallmark of mammalian sperm development and, by transducing cytoskeletal forces to the nuclear envelope, LINC complexes could be vital for sperm head formation as well. We here analyzed in detail the behavior and function of Sun4, a bona fide testis-specific LINC component. We demonstrate that Sun4 is solely expressed in spermatids and there localizes to the posterior nuclear envelope, likely interacting with Sun3/Nesprin1 LINC components. Our study revealed that Sun4 deficiency severely impacts the nucleocytoplasmic junction, leads to mislocalization of other LINC components and interferes with the formation of the microtubule manchette, which finally culminates in a globozoospermia-like phenotype. Together, our study provides direct evidence for a critical role of LINC complexes in mammalian sperm head formation and male fertility.}, language = {en} } @article{Meierjohann2015, author = {Meierjohann, Svenja}, title = {Hypoxia independent drivers of melanoma angiogenesis}, series = {Frontiers in Oncology}, volume = {5}, journal = {Frontiers in Oncology}, number = {120}, doi = {10.3389/fonc.2015.00102}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-125586}, year = {2015}, abstract = {Tumor angiogenesis is a process which is traditionally regarded as the tumor's response to low nutrient supply occurring under hypoxic conditions. However, hypoxia is not a pre-requisite for angiogenesis. The fact that even single tumor cells or small tumor cell aggregates are capable of attracting blood vessels reveals the early metastatic capability of tumor cells. This review sheds light on the hypoxia-independent mechanisms of tumor angiogenesis in melanoma.}, language = {en} } @article{HerterStauchGallantetal.2015, author = {Herter, Eva K. and Stauch, Maria and Gallant, Maria and Wolf, Elmar and Raabe, Thomas and Gallant, Peter}, title = {snoRNAs are a novel class of biologically relevant Myc targets}, series = {BMC Biology}, volume = {13}, journal = {BMC Biology}, number = {25}, doi = {10.1186/s12915-015-0132-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-124956}, year = {2015}, abstract = {Background Myc proteins are essential regulators of animal growth during normal development, and their deregulation is one of the main driving factors of human malignancies. They function as transcription factors that (in vertebrates) control many growth- and proliferation-associated genes, and in some contexts contribute to global gene regulation. Results We combine chromatin immunoprecipitation-sequencing (ChIPseq) and RNAseq approaches in Drosophila tissue culture cells to identify a core set of less than 500 Myc target genes, whose salient function resides in the control of ribosome biogenesis. Among these genes we find the non-coding snoRNA genes as a large novel class of Myc targets. All assayed snoRNAs are affected by Myc, and many of them are subject to direct transcriptional activation by Myc, both in Drosophila and in vertebrates. The loss of snoRNAs impairs growth during normal development, whereas their overexpression increases tumor mass in a model for neuronal tumors. Conclusions This work shows that Myc acts as a master regulator of snoRNP biogenesis. In addition, in combination with recent observations of snoRNA involvement in human cancer, it raises the possibility that Myc's transforming effects are partially mediated by this class of non-coding transcripts.}, language = {en} }