@phdthesis{Kuehl2022, author = {K{\"u}hl, Julia}, title = {FAAP100, der FA/BRCA-Signalweg f{\"u}r genomische Stabilit{\"a}t und das DNA-Reparatur-Netzwerk}, doi = {10.25972/OPUS-17166}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-171669}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Die Fanconi-An{\"a}mie (FA) ist eine seltene, heterogene Erbkrankheit. Sie weist ein sehr variables klinisches Erscheinungsbild auf, das sich aus angeborenen Fehlbildungen, h{\"a}matologischen Funktionsst{\"o}rungen, einem erh{\"o}hten Risiko f{\"u}r Tumorentwicklung und endokrinen Pathologien zusammensetzt. Die Erkrankung z{\"a}hlt zu den genomischen Instabilit{\"a}tssyndromen, welche durch eine fehlerhafte DNA-Schadensreparatur gekennzeichnet sind. Bei der FA zeigt sich dies vor allem in einer charakteristischen Hypersensitivit{\"a}t gegen{\"u}ber DNA-quervernetzenden Substanzen (z. B. Mitomycin C, Cisplatin). Der zellul{\"a}re FA-Ph{\"a}notyp zeichnet sich durch eine erh{\"o}hte Chromosomenbr{\"u}chigkeit und einen Zellzyklusarrest in der G2-Phase aus. Diese Charakteristika sind bereits spontan vorhanden und werden durch Induktion mit DNA-quervernetzenden Substanzen verst{\"a}rkt. Der Gendefekt ist dabei in einem der 22 bekannten FA-Gene (FANCA, -B, -C, -D1, -D2, -E, -F, -G, -I, -J, -L, -M, -N, -O, -P, -Q, -R, -S, -T, -U, -V, -W) oder in noch unbekannten FA-Genen zu finden. Die FA-Gendefekte werden mit Ausnahme von FANCR (dominant-negative de novo Mutationen) und FANCB (X-chromosomal) autosomal rezessiv vererbt. Die FA-Genprodukte bilden zusammen mit weiteren Proteinen den FA/BRCA-Signalweg. Das Schl{\"u}sselereignis dieses Signalwegs stellt die Monoubiquitinierung von FANCD2 und FANCI (ID2-Komplex) dar. Ausgehend davon l{\"a}sst sich zwischen upstream- und downstream-gelegenen FA-Proteinen unterscheiden. Letztere sind direkt an der DNA-Schadensreparatur beteiligt. Zu den upstream-gelegenen Proteinen z{\"a}hlt der FA-Kernkomplex, der sich aus bekannten FA-Proteinen und aus FA-assoziierten-Proteinen (FAAPs) zusammensetzt und f{\"u}r die Monoubiquitinierung des ID2-Komplexes verantwortlich ist. F{\"u}r FAAPs wurden bisher keine pathogenen humanen Mutationen beschrieben. Zu diesen Proteinen geh{\"o}rt auch FAAP100, das mit FANCB und FANCL innerhalb des FA-Kernkomplexes den Subkomplex LBP100 bildet. Durch die vorliegende Arbeit wurde eine n{\"a}here Charakterisierung dieses Proteins erreicht. In einer Amnion-Zelllinie konnte eine homozygote Missense-Mutation identifiziert werden. Der Fetus zeigte einen typischen FA-Ph{\"a}notyp und auch seine Zellen wiesen charakteristische FA-Merkmale auf. Der zellul{\"a}re Ph{\"a}notyp ließ sich durch FAAP100WT komplementieren, sodass die Pathogenit{\"a}t der Mutation bewiesen war. Unterst{\"u}tzend dazu wurden mithilfe des CRISPR/Cas9-Systems weitere FAAP100-defiziente Zelllinien generiert. Diese zeigten ebenfalls einen typischen FA-Ph{\"a}notyp, welcher sich durch FAAP100WT komplementieren ließ. Die in vitro-Modelle dienten als Grundlage daf{\"u}r, die Funktion des FA-Kernkomplexes im Allgemeinen und die des Subkomplexes LBP100 im Besonderen besser zu verstehen. Dabei kann nur durch intaktes FAAP100 das LBP100-Modul gebildet und dieses an die DNA-Schadensstelle transportiert werden. Dort leistet FAAP100 einen essentiellen Beitrag f{\"u}r den FANCD2-Monoubiquitinierungsprozess und somit f{\"u}r die Aktivierung der FA-abh{\"a}ngigen DNA-Schadensreparatur. Um die Funktion von FAAP100 auch in vivo zu untersuchen, wurde ein Faap100-/--Mausmodell generiert, das einen mit anderen FA-Mausmodellen vergleichbaren, relativ schweren FA-Ph{\"a}notyp aufwies. Aufgrund der Ergebnisse l{\"a}sst sich FAAP100 als neues FA-Gen klassifizieren. Zudem wurde die Rolle des Subkomplexes LBP100 innerhalb des FA-Kernkomplexes weiter aufgekl{\"a}rt. Beides tr{\"a}gt zu einem besseren Verst{\"a}ndnis des FA/BRCA-Signalweges bei. Ein weiterer Teil der vorliegenden Arbeit besch{\"a}ftigt sich mit der Charakterisierung von FAAP100138, einer bisher nicht validierten Isoform von FAAP100. Durch dieses Protein konnte der zellul{\"a}re FA-Ph{\"a}notyp von FAAP100-defizienten Zelllinien nicht komplementiert werden, jedoch wurden Hinweise auf einen dominant-negativen Effekt von FAAP100138 auf den FA/BRCA-Signalweg gefunden. Dies k{\"o}nnte zu der Erkl{\"a}rung beitragen, warum und wie der Signalweg, beispielsweise in bestimmtem Gewebearten, herunterreguliert wird. Zudem w{\"a}re eine Verwendung in der Krebstherapie denkbar.}, subject = {Fanconi-An{\"a}mie}, language = {de} } @phdthesis{Kortmann2022, author = {Kortmann, Mareike}, title = {Biodiversity and recreation - Optimizing tourism and forest management in forests affected by bark beetles}, doi = {10.25972/OPUS-24031}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-240317}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Forests are multi-functional system, which have to fulfil different objectives at the same time. The main functions include the production of wood, storage of carbon, the promotion of biological diversity and the provision of recreational space. Yet, global forests are affected by large and intense natural disturbances, like bark beetle infestations. While natural disturbances threaten wood production and are perceived as 'catastrophe' diminishing recreational value, biodiversity can benefit from the disturbance-induced changes in forest structures. This trade-off poses a dilemma to managers of bark beetle affected stands, particularly in protected areas designated to both nature conservation and recreation. Forest landscapes need a sustainable management concept aligning these different objectives. In order to support this goal with scientific knowledge, the aim of this work is to analyse ecological and social effects along a gradient of different disturbance severities. In this context, I studied the effects of a disturbance severity gradient on the diversity of different taxonomic groups including vascular plants, mosses, lichens, fungi, arthropods and birds in five national parks in Central Europe. To analyse the recreational value of the landscape I conducted visitor surveys in the same study areas in which the biodiversity surveys were performed. To analyse possible psychological or demographic effects on preferences for certain disturbance intensities, an additional online survey was carried out.}, subject = {Borkenk{\"a}fer}, language = {en} } @phdthesis{Kuhlemann2022, author = {Kuhlemann, Alexander}, title = {Bioorthogonal labeling of neuronal proteins using super-resolution fluorescence microscopy}, doi = {10.25972/OPUS-24373}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-243731}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {The synaptic cleft is of central importance for synaptic transmission, neuronal plasticity and memory and thus well studied in neurobiology. To target proteins of interest with high specificity and strong signal to noise conventional immunohistochemistry relies on the use of fluorescently labeled antibodies. However, investigations on synaptic receptors remain challenging due to the defined size of the synaptic cleft of ~20 nm between opposing pre- and postsynaptic membranes. At this limited space, antibodies bear unwanted side effects such as crosslinking, accessibility issues and a considerable linkage error between fluorophore and target of ~10 nm. With recent single molecule localization microscopy (SMLM) methods enabling localization precisions of a few nanometers, the demand for labeling approaches with minimal linkage error and reliable recognition of the target molecules rises. Within the scope of this work, different labeling techniques for super-resolution fluorescence microscopy were utilized allowing site-specific labeling of a single amino acid in synaptic proteins like kainate receptors (KARs), transmembrane α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor regulatory proteins (TARPs), γ-aminobutyric acid type A receptors (GABA-ARs) and neuroligin 2 (NL2). The method exploits the incorporation of unnatural amino acids (uAAs) in the protein of interest using genetic code expansion (GCE) via amber suppression technology and subsequent labeling with tetrazine functionalized fluorophores. Implementing this technique, hard-to-target proteins such as KARs, TARPs and GABA-ARs could be labeled successfully, which could only be imaged insufficiently with conventional labeling approaches. Furthermore, functional studies involving electrophysiological characterization, as well as FRAP and FRET experiments validated that incorporation of uAAs maintains the native character of the targeted proteins. Next, the method was transferred into primary hippocampal neurons and in combination with super-resolution microscopy it was possible to resolve the nanoscale organization of γ2 and γ8 TARPs. Cluster analysis of dSTORM localization data verified synaptic accumulation of γ2, while γ8 was homogenously distributed along the neuron. Additionally, GCE and bioorthogonal labeling allowed visualization of clickable GABA-A receptors located at postsynaptic compartments in dissociated hippocampal neurons. Moreover, saturation experiments and FRET imaging of clickable multimeric receptors revealed successful binding of multiple tetrazine functionalized fluorophores to uAA-modified dimeric GABA-AR α2 subunits in close proximity (~5 nm). Further utilization of tetrazine-dyes via super-resolution microscopy methods such as dSTORM and click-ExM will provide insights to subunit arrangement in receptors in the future. This work investigated the nanoscale organization of synaptic proteins with minimal linkage error enabling new insights into receptor assembly, trafficking and recycling, as well as protein-protein interactions at synapses. Ultimately, bioorthogonal labeling can help to understand pathologies such as the limbic encephalitis associated with GABA-AR autoantibodies and is already in application for cancer therapies.}, subject = {microscopy}, language = {en} } @phdthesis{Boetzl2022, author = {B{\"o}tzl, Fabian Alexander}, title = {The influence of crop management and adjacent agri-environmental scheme type on natural pest control in differently structured landscapes}, doi = {10.25972/OPUS-24140}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-241400}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Summary Chapters I \& II: General Introduction \& General Methods Agriculture is confronted with a rampant loss of biodiversity potentially eroding ecosystem service potentials and adding up to other stressors like climate change or the consequences of land-use change and intensive management. To counter this 'biodiversity crisis', agri-environment schemes (AES) have been introduced as part of ecological intensification efforts. These AES combine special management regimes with the establishment of tailored habitats to create refuges for biodiversity in agricultural landscapes and thus ensure biodiversity mediated ecosystem services such as pest control. However, little is known about how well different AES habitats fulfil this purpose and whether they benefit ecosystem services in adjacent crop fields. Here I investigated how effective different AES habitats are for restoring biodiversity in different agricultural landscapes (Chapter V) and whether they benefit natural pest control in adjacent oilseed rape (Chapter VI) and winter cereal fields (Chapter VII). I recorded biodiversity and pest control potentials using a variety of different methods (Chapters II, V, VI \& VII). Moreover, I validated the methodology I used to assess predator assemblages and predation rates (Chapters III \& IV). Chapter III: How to record ground dwelling predators? Testing methodology is critical as it ensures scientific standards and trustworthy results. Pitfall traps are widely used to record ground dwelling predators, but little is known about how different trap types affect catches. I compared different types of pitfall traps that had been used in previous studies in respect to resulting carabid beetle assemblages. While barrier traps collected more species and deliver more complete species inventories, conventional simple pitfall traps provide reliable results with comparatively little handling effort. Placing several simple pitfall traps in the field can compensate the difference while still saving handling effort.   Chapter IV: How to record predation rates? A plethora of methods has been proposed and used for recording predation rates, but these have rarely been validated before use. I assessed whether a novel approach to record predation, the use of sentinel prey cards with glued on aphids, delivers realistic results. I compared different sampling efforts and showed that obtained predation rates were similar and could be linked to predator (carabid beetle) densities and body-sizes (a proxy often used for food intake rates). Thus, the method delivers reliable and meaningful predation rates. Chapter V: Do AES habitats benefit multi-taxa biodiversity? The main goal of AES is the conservation of biodiversity in agricultural landscapes. I investigated how effectively AES habitats with different temporal continuity fulfil this goal in differently structured landscapes. The different AES habitats investigated had variable effects on local biodiversity. Temporal continuity of AES habitats was the most important predictor with older, more temporally continuous habitats harbouring higher overall biodiversity and different species assemblages in most taxonomic groups than younger AES habitats. Results however varied among taxonomic groups and natural enemies were equally supported by younger habitats. Semi-natural habitats in the surrounding landscape and AES habitat size were of minor importance for local biodiversity and had limited effects. This stresses that newly established AES habitats alone cannot restore farmland biodiversity. Both AES habitats as well as more continuous semi-natural habitats synergistically increase overall biodiversity in agricultural landscapes. Chapter VI: The effects of AES habitats on predators in adjacent oilseed rape fields Apart from biodiversity conservation, ensuring ecosystem service delivery in agricultural landscapes is a crucial goal of AES. I therefore investigated the effects of adjacent AES habitats on ground dwelling predator assemblages in oilseed rape fields. I found clear distance decay effects from the field edges into the field centres on both richness and densities of ground dwelling predators. Direct effects of adjacent AES habitats on assemblages in oilseed rape fields however were limited and only visible in functional traits of carabid beetle assemblages. Adjacent AES habitats doubled the proportion of predatory carabid beetles indicating a beneficial role for pest control. My results show that pest control potentials are largest close to the field edges and beneficial effects are comparably short ranged. Chapter VII: The effects of AES habitats on pest control in adjacent cereal fields Whether distance functions and potential effects of AES habitats are universal across crops is unknown. Therefore, I assessed distance functions of predators, pests, predation rates and yields after crop rotation in winter cereals using the same study design as in the previous year. Resulting distance functions were not uniform and differed from those found in oilseed rape in the previous year, indicating that the interactions between certain adjacent habitats vary with habitat and crop types. Distance functions of cereal-leaf beetles (important cereal pests) and parasitoid wasps were moreover modulated by semi-natural habitat proportion in the surrounding landscapes. Field edges buffered assemblage changes in carabid beetle assemblages over crop rotation confirming their important function as refuges for natural enemies. My results emphasize the beneficial role of field edges for pest control potentials. These findings back the calls for smaller field sizes and more diverse, more heterogeneously structured agricultural landscapes. Chapter VIII: General Discussion Countering biodiversity loss and ensuring ecosystem service provision in agricultural landscapes is intricate and requires strategic planning and restructuring of these landscapes. I showed that agricultural landscapes could benefit maximally from (i) a mixture of AES habitats and semi-natural habitats to support high levels of overall biodiversity and from (ii) smaller continuously managed agricultural areas (i.e. smaller field sizes or the insertion of AES elements within large fields) to maximize natural pest control potentials in crop fields. I propose a mosaic of younger AES habitats and semi-natural habitats to support ecosystem service providers and increase edge density for ecosystem service spillover into adjacent crops. The optimal extent and density of this network as well as the location in which AES and semi-natural habitats interact most beneficially with adjacent crops need further investigation. My results provide a further step towards more sustainable agricultural landscapes that simultaneously allow biodiversity to persist and maintain agricultural production under the framework of ecological intensification.}, subject = {{\"O}kologie}, language = {en} } @phdthesis{Vellmer2022, author = {Vellmer, Tim}, title = {New insights into the histone variant H2A.Z incorporation pathway in \(Trypanosoma\) \(brucei\)}, doi = {10.25972/OPUS-25796}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-257960}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {The histone variant H2A.Z is a key player in transcription regulation in eukaryotes. Histone acetylations by the NuA4/TIP60 complex are required to enable proper incorporation of the histone variant and to promote the recruitment of other complexes and proteins required for transcription initiation. The second key player in H2A.Z-mediated transcription is the chromatin remodelling complex SWR1, which replaces the canonical histone H2A with its variant. By the time this project started little was known about H2A.Z in the unicellular parasite Trypanosoma brucei. Like in other eukaryotes H2A.Z was exclusively found in the transcription start sites of the polycistronic transcription units where it keeps the chromatin in an open conformation to enable RNA-polymerase II-mediated transcription. Previous studies showed the variant colocalizing with an acetylation of lysine on histone H4 and a methylation of lysine 4 on histone H3. Data indicated that HAT2 is linked to H2A.Z since it is required for acetylation of lyinse 10 on histone H4. A SWR1-like complex and a complex homologous to the NuA4/TIP60 could not be identified yet. This study aimed at identifying a SWR1-like remodelling complex in T. brucei and at identifying a protein complex orthologous to NuA4/TIP60 as well as at answering the question whether HAT2 is part of this complex or not. To this end, I performed multiple mass spectrometry-coupled co-Immunoprecipitation assays with potential subunits of a SWR1 complex, HAT2 and a putative homolog of a NuA4/TIP60 subunit. In the course of these experiments, I was able to identify the TbSWR1 complex. Subsequent cell fractionation and chromatin immunoprecipitation-coupled sequencing analysis experiments confirmed, that this complex is responsible for the incorporation of the histone variant H2A.Z in T. brucei. In addition to this chromatin remodelling complex, I was also able to identify two histone acetyltransferase complexes assembled around HAT1 and HAT2. In the course of my study data were published by the research group of Nicolai Siegel that identified the histone acetyltransferase HAT2 as being responsible for histone H4 acetylation, in preparation to promote H2A.Z incorporation. The data also indicated that HAT1 is responsible for acetylation of H2A.Z. According to the literature, this acetylation is required for proper transcription initiation. Experimental data generated in this study indicated, that H2A.Z and therefore TbSWR1 is involved in the DNA double strand break response of T. brucei. The identification of the specific complex composition of all three complexes provided some hints about how they could interact with each other in the course of transcription regulation and the DNA double strand break response. A proximity labelling approach performed with one of the subunits of the TbSWR1 complex identified multiple transcription factors, PTM writers and proteins potentially involved in chromatin maintenance. Overall, this work will provide some interesting insights about the composition of the complexes involved in H2A.Z incorporation in T. brucei. Furthermore, it is providing valuable information to set up experiments that could shed some light on RNA-polymerase II-mediated transcription and chromatin remodelling in T. brucei in particular and Kinetoplastids in general.}, subject = {Chromatinremodelling}, language = {en} } @phdthesis{Lasway2022, author = {Lasway, Julius Vincent}, title = {Impact of human land use on bee diversity and plant-pollinator interactions in Tanzania savannah ecosystems}, doi = {10.25972/OPUS-25772}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-257726}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {One of the pronounced global challenges facing ecologists is how to feed the current growing human population while sustaining biodiversity and ecosystem services. To shed light on this, I investigated the impact of human land use on bee diversity and plant-pollinator interactions in Tanzania Savannah ecosystems. The thesis comprises the following chapters: Chapter I: General Introduction This chapter provides the background information including the study objectives and hypotheses. It highlights the ecological importance of bees and the main threats facing bee pollinators with a focus on two land-use practices namely livestock grazing and agriculture. It also highlights the diversity and global distribution of bees. It further introduces the tropical savannah ecosystem, its climate, and vegetation characteristics and explains spectacular megafauna species of the system that form centers of wildlife tourism and inadequacy knowledge on pollinators diversity of the system. Finally, this chapter describes the study methodology including, the description of the study area, study design, and data collection. Chapter II: Positive effects of low livestock grazing intensity on East African bee assemblages mediated by increases in floral resources The impact of livestock grazing intensity on bee assemblage has been subjected to research over decades. Moreover, most of these studies have been conducted in temperate Europe and America leaving the huge tropical savannah of East Africa less studied. Using sweep netting and pan traps, a total of 183 species (from 2,691 individuals) representing 55 genera and five families were collected from 24 study sites representing three levels of livestock grazing intensity in savannah ecosystem of northern Tanzania. Results have shown that moderate livestock grazing slightly increased bee species richness. However, high livestock grazing intensity led to a strong decline. Besides, results revealed a unimodal distribution pattern of bee species richness and mean annual temperature. It was also found that the effect of livestock grazing and environmental temperature on bee species richness was mediated by a positive effect of moderate grazing on floral resource richness. The study, therefore, reveals that bee communities of the African savannah zone may benefit from low levels of livestock grazing as this favors the growth of flowering plant species. A high level of livestock grazing intensity will cause significant species losses, an effect that may increase with climatic warming. Chapter III: Agricultural intensification with seasonal fallow land promotes high bee diversity in Afrotropical drylands This study investigated the impact of local agriculture intensification on bee diversity in the Afro tropical drylands of northern Tanzania. Using sweep netting and pan traps, a total of 219 species (from 3,428 individuals) representing 58 genera and six families were collected from 24 study sites (distributed from 702 to 1708 m. asl) representing three levels of agriculture intensity spanning an extensive gradient of mean annual temperature. Results showed that bee species richness increased with agricultural intensity and with increasing temperature. However, the effects of agriculture intensity and temperature on bee species richness were mediated by the positive effects of agriculture and temperature on floral resource richness used by bee pollinators. Moreover, results showed that variation of bee body sizes increases with agricultural intensification, "that effect", however, diminished in environments with higher temperatures. This study reveals that bee assemblages in Afrotropical drylands benefit from agriculture intensification in the way it is currently practiced. Further intensification, including year-round irrigated crop monocultures and extensive use of agrochemicals, is likely to exert a negative impact on bee diversity and pollination services, as reported in temperate regions. Moreover, several bee species were restricted to natural savannah habitats. Therefore, to conserve bee communities in Afro tropical drylands and guarantee pollination services, a mixture of savannah and agriculture, with long periods of fallow land should be maintained. Chapter IV: Impact of land use intensification and local features on plants and pollinators in Sub-Saharan smallholder farms For the first time in the region, this study explores the impact of land-use intensification on plants and pollinators in Sub-Saharan smallholder farms. The study complemented field surveys of bees with a modern DNA metabarcoding approach to characterize the foraged plants and thus built networks describing plant-pollinator interactions at the individual insect level. This information was coupled with quantitative traits of landscape composition and floral availability surrounding each farm. The study found that pollinator richness decreased with increasing impervious and agricultural cover in the landscape, whereas the flower density at each farm correlated with pollinator richness. The intensification of agricultural land use and urbanization correlated with a higher foraging niche overlap among pollinators due to the convergence of individuals' flower-visiting strategies. Furthermore, within farms, the higher availability of floral resources drove lower niche overlap among individuals, greater abundance of flower visitors shaped higher generalization at the networks level (H2I), possibly due to increased competition. These mechanistic understandings leading to individuals' foraging niche overlap and generalism at the network level, could imply stability of interactions and the pollination ecosystem service. The integrative survey proved that plant-pollinator systems are largely affected by land use intensification and by local factors in smallholder farms of Sub-Saharan Africa. Thus, policies promoting nature-based solutions, among which the introduction of more pollinator-friendly practices by smallholder farmers, could be effective in mitigating the intensification of both urban and rural landscapes in this region, as well as in similar Sub-Saharan contexts. Chapter V: A synopsis of the Bee occurrence data of northern Tanzania This study represents a synopsis of the bee occurrence data of northern Tanzania obtained from a survey in the Kilimanjaro, Arusha, and Manyara regions. Bees were sampled using two standardized methods, sweep netting and colored pan traps. The study summed up 953 species occurrences of 45 species belonging to 20 genera and four families (Halictidae, Apidae, Megachilidae, and andrenidae) A. This study serves as the baseline information in understanding the diversity and distribution of bees in the northern parts of the country. Understanding the richness and distribution of bees is a critical step in devising robust conservation and monitoring strategies for their populations since limited taxonomic information of the existing and unidentified bee species makes their conservation haphazard. Chapter VI: General discussion In general, findings obtained in these studies suggest that livestock grazing and agriculture intensification affects bee assemblages and floral resources used by bee pollinators. Results have shown that moderate livestock grazing intensity may be important in preserving bee diversity. However, high level of livestock grazing intensity may result in a strong decline in bee species richness and abundance. Moreover, findings indicate that agriculture intensification with seasonal fallow lands supports high floral resource richness promoting high bee diversity in Afrotropical drylands. Nonetheless, natural savannahs were found to contain unique bee species. Therefore, agriculture intensification with seasonal fallow should go in hand with conserving remnant savannah in the landscapes to increase bee diversity and ensure pollination services. Likewise, findings suggest that increasing urbanization and agriculture cover at the landscape level reduce plant and pollinator biodiversity with negative impacts on their complex interactions with plants. Conversely, local scale availability of floral resources has shown the positive effects in buffering pollinators decline and mitigating all detrimental effects induced by land-use intensification. Moreover, findings suggest that the impact of human land use (livestock grazing and agriculture) do not act in isolation but synergistically interacts with climatic factors such as mean annual temperature, MAT. The impact of MAT on bee species richness in grazing gradient showed to be more detrimental than in agriculture habitats. This could probably be explained by the remaining vegetation cover following anthropogenic disturbance. Meaning that the remaining vegetation cover in the agricultural gradient probably absorbs the solar radiations hence reducing detrimental effect of mean annual temperature on bee species richness. This one is not the case in grazing gradient since the impact of livestock grazing is severe, leaving the bare land with no vegetation cover. Finally, our findings conclude that understanding the interplay of multiple anthropogenic activities and their interaction with MAT as a consequence of ongoing climate change is necessary for mitigating their potential consequences on bee assemblages and the provision of ecosystem services. Morever, future increases in livestock grazing and agriculture intensification (including year-round crop irrigated monocultures and excessive use of agrochemicals) may lead to undesirable consequences such as species loss and impair provision of pollination services.}, subject = {Human land use}, language = {en} } @article{BahenaDaftarianMaroofianetal.2022, author = {Bahena, Paulina and Daftarian, Narsis and Maroofian, Reza and Linares, Paola and Villalobos, Daniel and Mirrahimi, Mehraban and Rad, Aboulfazl and Doll, Julia and Hofrichter, Michaela A. H. and Koparir, Asuman and R{\"o}der, Tabea and Han, Seungbin and Sabbaghi, Hamideh and Ahmadieh, Hamid and Behboudi, Hassan and Villanueva-Mendoza, Cristina and Cort{\´e}s-Gonzalez, Vianney and Zamora-Ortiz, Rocio and Kohl, Susanne and Kuehlewein, Laura and Darvish, Hossein and Alehabib, Elham and La Arenas-Sordo, Maria de Luz and Suri, Fatemeh and Vona, Barbara and Haaf, Thomas}, title = {Unraveling the genetic complexities of combined retinal dystrophy and hearing impairment}, series = {Human Genetics}, volume = {141}, journal = {Human Genetics}, number = {3-4}, issn = {1432-1203}, doi = {10.1007/s00439-021-02303-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-267750}, pages = {785-803}, year = {2022}, abstract = {Usher syndrome, the most prevalent cause of combined hereditary vision and hearing impairment, is clinically and genetically heterogeneous. Moreover, several conditions with phenotypes overlapping Usher syndrome have been described. This makes the molecular diagnosis of hereditary deaf-blindness challenging. Here, we performed exome sequencing and analysis on 7 Mexican and 52 Iranian probands with combined retinal degeneration and hearing impairment (without intellectual disability). Clinical assessment involved ophthalmological examination and hearing loss questionnaire. Usher syndrome, most frequently due to biallelic variants in MYO7A (USH1B in 16 probands), USH2A (17 probands), and ADGRV1 (USH2C in 7 probands), was diagnosed in 44 of 59 (75\%) unrelated probands. Almost half of the identified variants were novel. Nine of 59 (15\%) probands displayed other genetic entities with dual sensory impairment, including Alstr{\"o}m syndrome (3 patients), cone-rod dystrophy and hearing loss 1 (2 probands), and Heimler syndrome (1 patient). Unexpected findings included one proband each with Scheie syndrome, coenzyme Q10 deficiency, and pseudoxanthoma elasticum. In four probands, including three Usher cases, dual sensory impairment was either modified/aggravated or caused by variants in distinct genes associated with retinal degeneration and/or hearing loss. The overall diagnostic yield of whole exome analysis in our deaf-blind cohort was 92\%. Two (3\%) probands were partially solved and only 3 (5\%) remained without any molecular diagnosis. In many cases, the molecular diagnosis is important to guide genetic counseling, to support prognostic outcomes and decisions with currently available and evolving treatment modalities.}, language = {en} } @phdthesis{Niehoerster2022, author = {Nieh{\"o}rster, Thomas}, title = {Spektral aufgel{\"o}ste Fluoreszenzlebensdauer-Mikroskopie mit vielen Farben}, doi = {10.25972/OPUS-29657}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-296573}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Die Fluoreszenzmikroskopie ist eine vielseitig einsetzbare Untersuchungsmethode f{\"u}r biologische Proben, bei der Biomolek{\"u}le selektiv mit Fluoreszenzfarbstoffen markiert werden, um sie dann mit sehr gutem Kontrast abzubilden. Dies ist auch mit mehreren verschiedenartigen Zielmolek{\"u}len gleichzeitig m{\"o}glich, wobei {\"u}blicherweise verschiedene Farbstoffe eingesetzt werden, die {\"u}ber ihre Spektren unterschieden werden k{\"o}nnen. Um die Anzahl gleichzeitig verwendbarer F{\"a}rbungen zu maximieren, wird in dieser Arbeit zus{\"a}tzlich zur spektralen Information auch das zeitliche Abklingverhalten der Fluoreszenzfarbstoffe mittels spektral aufgel{\"o}ster Fluoreszenzlebensdauer-Mikroskopie (spectrally resolved fluorescence lifetime imaging microscopy, sFLIM) vermessen. Dazu wird die Probe in einem Konfokalmikroskop von drei abwechselnd gepulsten Lasern mit Wellenl{\"a}ngen von 485 nm, 532nm und 640nm angeregt. Die Detektion des Fluoreszenzlichtes erfolgt mit einer hohen spektralen Aufl{\"o}sung von 32 Kan{\"a}len und gleichzeitig mit sehr hoher zeitlicher Aufl{\"o}sung von einigen Picosekunden. Damit wird zu jedem detektierten Fluoreszenzphoton der Anregungslaser, der spektrale Kanal und die Ankunftszeit registriert. Diese detaillierte multidimensionale Information wird von einem Pattern-Matching-Algorithmus ausgewertet, der das Fluoreszenzsignal mit zuvor erstellten Referenzpattern der einzelnen Farbstoffe vergleicht. Der Algorithmus bestimmt so f{\"u}r jedes Pixel die Beitr{\"a}ge der einzelnen Farbstoffe. Mit dieser Technik konnten pro Anregungslaser f{\"u}nf verschiedene F{\"a}rbungen gleichzeitig dargestellt werden, also theoretisch insgesamt 15 F{\"a}rbungen. In der Praxis konnten mit allen drei Lasern zusammen insgesamt neun F{\"a}rbungen abgebildet werden, wobei die Anzahl der Farben vor allem durch die anspruchsvolle Probenvorbereitung limitiert war. In anderen Versuchen konnte die sehr hohe Sensitivit{\"a}t des sFLIM-Systems genutzt werden, um verschiedene Zielmolek{\"u}le voneinander zu unterscheiden, obwohl sie alle mit demselben Farbstoff markiert waren. Dies war m{\"o}glich, weil sich die Fluoreszenzeigenschaften eines Farbstoffmolek{\"u}ls geringf{\"u}gig in Abh{\"a}ngigkeit von seiner Umgebung {\"a}ndern. Weiterhin konnte die sFLIM-Technik mit der hochaufl{\"o}senden STED-Mikroskopie (STED: stimulated emission depletion) kombiniert werden, um so hochaufgel{\"o}ste zweifarbige Bilder zu erzeugen, wobei nur ein einziger gemeinsamer STED-Laser ben{\"o}tigt wurde. Die gleichzeitige Erfassung von mehreren photophysikalischen Messgr{\"o}ßen sowie deren Auswertung durch den Pattern-Matching-Algorithmus erm{\"o}glichten somit die Entwicklung von neuen Methoden der Fluoreszenzmikroskopie f{\"u}r Mehrfachf{\"a}rbungen.}, subject = {Fluoreszenzmikroskopie}, language = {de} } @article{LichterPaulPaulietal.2022, author = {Lichter, Katharina and Paul, Mila Marie and Pauli, Martin and Schoch, Susanne and Kollmannsberger, Philip and Stigloher, Christian and Heckmann, Manfred and Sir{\´e}n, Anna-Leena}, title = {Ultrastructural analysis of wild-type and RIM1α knockout active zones in a large cortical synapse}, series = {Cell Reports}, volume = {40}, journal = {Cell Reports}, number = {12}, doi = {10.1016/j.celrep.2022.111382}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300913}, year = {2022}, abstract = {Rab3A-interacting molecule (RIM) is crucial for fast Ca\(^{2+}\)-triggered synaptic vesicle (SV) release in presynaptic active zones (AZs). We investigated hippocampal giant mossy fiber bouton (MFB) AZ architecture in 3D using electron tomography of rapid cryo-immobilized acute brain slices in RIM1α\(^{-/-}\) and wild-type mice. In RIM1α\(^{-/-}\), AZs are larger with increased synaptic cleft widths and a 3-fold reduced number of tightly docked SVs (0-2 nm). The distance of tightly docked SVs to the AZ center is increased from 110 to 195 nm, and the width of their electron-dense material between outer SV membrane and AZ membrane is reduced. Furthermore, the SV pool in RIM1α\(^{-/-}\) is more heterogeneous. Thus, RIM1α, besides its role in tight SV docking, is crucial for synaptic architecture and vesicle pool organization in MFBs.}, language = {en} } @article{JeanclosSchloetzerHadameketal.2022, author = {Jeanclos, Elisabeth and Schl{\"o}tzer, Jan and Hadamek, Kerstin and Yuan-Chen, Natalia and Alwahsh, Mohammad and Hollmann, Robert and Fratz, Stefanie and Yesilyurt-Gerhards, Dilan and Frankenbach, Tina and Engelmann, Daria and Keller, Angelika and Kaestner, Alexandra and Schmitz, Werner and Neuenschwander, Martin and Hergenr{\"o}der, Roland and Sotriffer, Christoph and von Kries, Jens Peter and Schindelin, Hermann and Gohla, Antje}, title = {Glycolytic flux control by drugging phosphoglycolate phosphatase}, series = {Nature Communications}, volume = {13}, journal = {Nature Communications}, number = {1}, doi = {10.1038/s41467-022-34228-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300928}, year = {2022}, abstract = {Targeting the intrinsic metabolism of immune or tumor cells is a therapeutic strategy in autoimmunity, chronic inflammation or cancer. Metabolite repair enzymes may represent an alternative target class for selective metabolic inhibition, but pharmacological tools to test this concept are needed. Here, we demonstrate that phosphoglycolate phosphatase (PGP), a prototypical metabolite repair enzyme in glycolysis, is a pharmacologically actionable target. Using a combination of small molecule screening, protein crystallography, molecular dynamics simulations and NMR metabolomics, we discover and analyze a compound (CP1) that inhibits PGP with high selectivity and submicromolar potency. CP1 locks the phosphatase in a catalytically inactive conformation, dampens glycolytic flux, and phenocopies effects of cellular PGP-deficiency. This study provides key insights into effective and precise PGP targeting, at the same time validating an allosteric approach to control glycolysis that could advance discoveries of innovative therapeutic candidates.}, language = {en} } @article{KayaZeebEngelmayerStrassburgeretal.2022, author = {Kaya-Zeeb, Sinan and Engelmayer, Lorenz and Straßburger, Mara and Bayer, Jasmin and B{\"a}hre, Heike and Seifert, Roland and Scherf-Clavel, Oliver and Thamm, Markus}, title = {Octopamine drives honeybee thermogenesis}, series = {eLife}, volume = {11}, journal = {eLife}, doi = {10.7554/eLife.74334}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-301327}, year = {2022}, abstract = {In times of environmental change species have two options to survive: they either relocate to a new habitat or they adapt to the altered environment. Adaptation requires physiological plasticity and provides a selection benefit. In this regard, the Western honeybee (Apis mellifera) protrudes with its thermoregulatory capabilities, which enables a nearly worldwide distribution. Especially in the cold, shivering thermogenesis enables foraging as well as proper brood development and thus survival. In this study, we present octopamine signaling as a neurochemical prerequisite for honeybee thermogenesis: we were able to induce hypothermia by depleting octopamine in the flight muscles. Additionally, we could restore the ability to increase body temperature by administering octopamine. Thus, we conclude that octopamine signaling in the flight muscles is necessary for thermogenesis. Moreover, we show that these effects are mediated by β octopamine receptors. The significance of our results is highlighted by the fact the respective receptor genes underlie enormous selective pressure due to adaptation to cold climates. Finally, octopamine signaling in the service of thermogenesis might be a key strategy to survive in a changing environment.}, language = {en} } @article{ReinhardBertoliniSaitoetal.2022, author = {Reinhard, Nils and Bertolini, Enrico and Saito, Aika and Sekiguchi, Manabu and Yoshii, Taishi and Rieger, Dirk and Helfrich-F{\"o}rster, Charlotte}, title = {The lateral posterior clock neurons of Drosophila melanogaster express three neuropeptides and have multiple connections within the circadian clock network and beyond}, series = {Journal of Comparative Neurology}, volume = {530}, journal = {Journal of Comparative Neurology}, number = {9}, doi = {10.1002/cne.25294}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-276456}, pages = {1507 -- 1529}, year = {2022}, abstract = {Drosophila's lateral posterior neurons (LPNs) belong to a small group of circadian clock neurons that is so far not characterized in detail. Thanks to a new highly specific split-Gal4 line, here we describe LPNs' morphology in fine detail, their synaptic connections, daily bimodal expression of neuropeptides, and propose a putative role of this cluster in controlling daily activity and sleep patterns. We found that the three LPNs are heterogeneous. Two of the neurons with similar morphology arborize in the superior medial and lateral protocerebrum and most likely promote sleep. One unique, possibly wakefulness-promoting, neuron with wider arborizations extends from the superior lateral protocerebrum toward the anterior optic tubercle. Both LPN types exhibit manifold connections with the other circadian clock neurons, especially with those that control the flies' morning and evening activity (M- and E-neurons, respectively). In addition, they form synaptic connections with neurons of the mushroom bodies, the fan-shaped body, and with many additional still unidentified neurons. We found that both LPN types rhythmically express three neuropeptides, Allostatin A, Allostatin C, and Diuretic Hormone 31 with maxima in the morning and the evening. The three LPN neuropeptides may, furthermore, signal to the insect hormonal center in the pars intercerebralis and contribute to rhythmic modulation of metabolism, feeding, and reproduction. We discuss our findings in the light of anatomical details gained by the recently published hemibrain of a single female fly on the electron microscopic level and of previous functional studies concerning the LPN.}, language = {en} } @article{LaswayPetersNjovuetal.2022, author = {Lasway, Julius V. and Peters, Marcell K. and Njovu, Henry K. and Eardley, Connal and Pauly, Alain and Steffan-Dewenter, Ingolf}, title = {Agricultural intensification with seasonal fallow land promotes high bee diversity in Afrotropical drylands}, series = {Journal of Applied Ecology}, volume = {59}, journal = {Journal of Applied Ecology}, number = {12}, doi = {10.1111/1365-2664.14296}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-311877}, pages = {3014 -- 3026}, year = {2022}, abstract = {The exponential increase in the human population in tandem with increased food demand has caused agriculture to be the global-dominant form of land use. Afrotropical drylands are currently facing the loss of natural savannah habitats and agricultural intensification with largely unknown consequences for bees. Here we investigate the effects of agricultural intensification on bee assemblages in the Afrotropical drylands of northern Tanzania. We disentangled the direct effects of agricultural intensification and temperature on bee richness from indirect effects mediated by changes in floral resources. We collected data from 24 study sites representing three levels of management intensity (natural savannah, moderate intensive and highly intensive agriculture) spanning an extensive gradient of mean annual temperature (MAT) in northern Tanzania. We used ordinary linear models and path analysis to test the effects of agricultural intensity and MAT on bee species richness, bee species composition and body-size variation of bee communities. We found that bee species richness increased with agricultural intensity and with increasing temperature. The effects of agricultural intensity and temperature on bee species richness were mediated by the positive effects of agriculture and temperature on the richness of floral resources used by bees. During the off-growing season, agricultural land was characterized by an extensive period of fallow land holding a very high density of flowering plants with unique bee species composition. The increase in bee diversity in agricultural habitats paralleled an increasing variation of bee body sizes with agricultural intensification that, however, diminished in environments with higher temperatures. Synthesis and applications. Our study reveals that bee assemblages in Afrotropical drylands benefit from agricultural intensification in the way it is currently practiced. However, further land-use intensification, including year-round irrigated crop monocultures and excessive use of agrochemicals, is likely to exert a negative impact on bee diversity and pollination services, as reported in temperate regions. Moreover, several bee species were restricted to natural savannah habitats. To conserve bee communities and guarantee pollination services in the region, a mixture of savannah and agriculture, with long periods of fallow land should be maintained.}, language = {en} } @article{SponslerRequierKallniketal.2022, author = {Sponsler, Douglas B. and Requier, Fabrice and Kallnik, Katharina and Classen, Alice and Maihoff, Fabienne and Sieger, Johanna and Steffan-Dewenter, Ingolf}, title = {Contrasting patterns of richness, abundance, and turnover in mountain bumble bees and their floral hosts}, series = {Ecology}, volume = {103}, journal = {Ecology}, number = {7}, doi = {10.1002/ecy.3712}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-287199}, year = {2022}, abstract = {Environmental gradients generate and maintain biodiversity on Earth. Mountain slopes are among the most pronounced terrestrial environmental gradients, and the elevational structure of species and their interactions can provide unique insight into the processes that govern community assembly and function in mountain ecosystems. We recorded bumble bee-flower interactions over 3 years along a 1400-m elevational gradient in the German Alps. Using nonlinear modeling techniques, we analyzed elevational patterns at the levels of abundance, species richness, species β-diversity, and interaction β-diversity. Though floral richness exhibited a midelevation peak, bumble bee richness increased with elevation before leveling off at the highest sites, demonstrating the exceptional adaptation of these bees to cold temperatures and short growing seasons. In terms of abundance, though, bumble bees exhibited divergent species-level responses to elevation, with a clear separation between species preferring low versus high elevations. Overall interaction β-diversity was mainly caused by strong turnover in the floral community, which exhibited a well-defined threshold of β-diversity rate at the tree line ecotone. Interaction β-diversity increased sharply at the upper extreme of the elevation gradient (1800-2000 m), an interval over which we also saw steep decline in floral richness and abundance. Turnover of bumble bees along the elevation gradient was modest, with the highest rate of β-diversity occurring over the interval from low- to mid-elevation sites. The contrast between the relative robustness bumble bee communities and sensitivity of plant communities to the elevational gradient in our study suggests that the strongest effects of climate change on mountain bumble bees may be indirect effects mediated by the responses of their floral hosts, though bumble bee species that specialize in high-elevation habitats may also experience significant direct effects of warming.}, language = {en} } @article{GebertSteffan‐DewenterKronbachetal.2022, author = {Gebert, Friederike and Steffan-Dewenter, Ingolf and Kronbach, Patrick and Peters, Marcell K.}, title = {The role of diversity, body size and climate in dung removal: A correlative and experimental approach}, series = {Journal of Animal Ecology}, volume = {91}, journal = {Journal of Animal Ecology}, number = {11}, doi = {10.1111/1365-2656.13798}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-293907}, pages = {2181 -- 2191}, year = {2022}, abstract = {The mechanisms by which climatic changes influence ecosystem functions, that is, by a direct climatic control of ecosystem processes or by modifying richness and trait compositions of species communities, remain unresolved. This study is a contribution to this discourse by elucidating the linkages between climate, land use, biodiversity, body size and ecosystem functions. We disentangled direct climatic from biodiversity-mediated effects by using dung removal by dung beetles as a model system and by combining correlative field data and exclosure experiments along an extensive elevational gradient on Mt. Kilimanjaro, Tanzania. Dung removal declined with increasing elevation, being associated with a strong reduction in the richness and body size traits of dung beetle communities. Climate influenced dung removal rates by modifying biodiversity rather than by direct effects. The biodiversity-ecosystem effect was driven by a change in the mean body size of dung beetles. Dung removal rates were strongly reduced when large dung beetles were experimentally excluded. This study underscores that climate influences ecosystem functions mainly by modifying biodiversity and underpins the important role of body size for dung removal.}, language = {en} } @article{KortmannRothBuseetal.2022, author = {Kortmann, Mareike and Roth, Nicolas and Buse, J{\"o}rn and Hilszczański, Jacek and Jaworski, Tomasz and Morini{\`e}re, J{\´e}r{\^o}me and Seidl, Rupert and Thorn, Simon and M{\"u}ller, J{\"o}rg C.}, title = {Arthropod dark taxa provide new insights into diversity responses to bark beetle infestations}, series = {Ecological Applications}, volume = {32}, journal = {Ecological Applications}, number = {2}, doi = {10.1002/eap.2516}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-276392}, year = {2022}, abstract = {Natural disturbances are increasing around the globe, also impacting protected areas. Although previous studies have indicated that natural disturbances result in mainly positive effects on biodiversity, these analyses mostly focused on a few well established taxonomic groups, and thus uncertainty remains regarding the comprehensive impact of natural disturbances on biodiversity. Using Malaise traps and meta-barcoding, we studied a broad range of arthropod taxa, including dark and cryptic taxa, along a gradient of bark beetle disturbance severities in five European national parks. We identified order-level community thresholds of disturbance severity and classified barcode index numbers (BINs; a cluster system for DNA sequences, where each cluster corresponds to a species) as negative or positive disturbance indicators. Negative indicator BINs decreased above thresholds of low to medium disturbance severity (20\%-30\% of trees killed), whereas positive indicator BINs benefited from high disturbance severity (76\%-98\%). BINs allocated to a species name contained nearly as many positive as negative disturbance indicators, but dark and cryptic taxa, particularly Diptera and Hymenoptera in our data, contained higher numbers of negative disturbance indicator BINs. Analyses of changes in the richness of BINs showed variable responses of arthropods to disturbance severity at lower taxonomic levels, whereas no significant signal was detected at the order level due to the compensatory responses of the underlying taxa. We conclude that the analyses of dark taxa can offer new insights into biodiversity responses to disturbances. Our results suggest considerable potential for forest management to foster arthropod diversity, for example by maintaining both closed-canopy forests (>70\% cover) and open forests (<30\% cover) on the landscape.}, language = {en} } @article{UhlerHaaseHoffmannetal.2022, author = {Uhler, Johannes and Haase, Peter and Hoffmann, Lara and Hothorn, Torsten and Schmidl, J{\"u}rgen and Stoll, Stefan and Welti, Ellen A. R. and Buse, J{\"o}rn and M{\"u}ller, J{\"o}rg}, title = {A comparison of different Malaise trap types}, series = {Insect Conservation and Diversity}, volume = {15}, journal = {Insect Conservation and Diversity}, number = {6}, doi = {10.1111/icad.12604}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-293694}, pages = {666 -- 672}, year = {2022}, abstract = {Recent reports on insect decline have highlighted the need for long-term data on insect communities towards identifying their trends and drivers. With the launch of many new insect monitoring schemes to investigate insect communities over large spatial and temporal scales, Malaise traps have become one of the most important tools due to the broad spectrum of species collected and reduced capture bias through passive sampling of insects day and night. However, Malaise traps can vary in size, shape, and colour, and it is unknown how these differences affect biomass, species richness, and composition of trap catch, making it difficult to compare results between studies. We compared five Malaise trap types (three variations of the Townes and two variations of the Bartak Malaise trap) to determine their effects on biomass and species richness as identified by metabarcoding. Insect biomass varied by 20\%-55\%, not strictly following trap size but varying with trap type. Total species richness was 20\%-38\% higher in the three Townes trap models compared to the Bartak traps. Bartak traps captured lower richness of highly mobile taxa but increased richness of ground-dwelling taxa. The white roofed Townes trap captured a higher richness of pollinators. We find that biomass, total richness, and taxa group specific richness are all sensitive to Malaise trap type. Trap type should be carefully considered and aligned to match monitoring and research questions. Additionally, our estimates of trap type effects can be used to adjust results to facilitate comparisons across studies.}, language = {en} } @article{KohlSteffan‐Dewenter2022, author = {Kohl, Patrick L. and Steffan-Dewenter, Ingolf}, title = {Nectar robbing rather than pollinator availability constrains reproduction of a bee-flowered plant at high elevations}, series = {Ecosphere}, volume = {13}, journal = {Ecosphere}, number = {6}, doi = {10.1002/ecs2.4077}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-287141}, year = {2022}, abstract = {Abiotic factors are generally assumed to determine whether species can exist at the extreme ends of environmental gradients, for example, at high elevations, whereas the role of biotic interactions is less clear. On temperate mountains, insect-pollinated plant species with bilaterally symmetrical flowers exhibit a parallel elevational decline in species richness and abundance with bees. This suggests that the lack of mutualistic interaction partners sets the elevational range limits of plants via a reduction in reproductive success. We used the bee-pollinated mountain plant Clinopodium alpinum (Lamiaceae), which blooms along a continuous 1000-m elevational gradient and has bilaterally symmetrical flowers, as a model to test the predicted parallel elevational decline in flower visitation and seed production. Although the community of flower visitors changed with elevation, the flower visitation rate by the most frequent visitors, bumble bees (33.8\% of legitimate visits), and the overall rate of flower visitation by potential pollinators did not vary significantly with elevation. However, we discovered that nectar robbing by bumble bees and nectar theft by ants, two interactions with potentially negative effects on flowers, sharply increased with elevation. Seed set depended on pollinators across elevations and followed a weak hump-shaped pattern, peaking at mid-elevations and decreasing by about 20\% toward both elevational range edges. Considering the mid- and high elevations, elevational variation in seed production could not be explained by legitimate bee visitation rates but was inversely correlated with the frequency of nectar robbing. Our observations challenge the hypothesis that a decrease in the availability of pollinators limits seed production of bee-flowered plants at high elevations but suggest that an increase in negative interactions (nectar robbing and larceny) constrains reproductive success.}, language = {en} } @article{JonesHuangHedrichetal.2022, author = {Jones, Jeffrey J. and Huang, Shouguang and Hedrich, Rainer and Geilfus, Christoph-Martin and Roelfsema, M. Rob G.}, title = {The green light gap: a window of opportunity for optogenetic control of stomatal movement}, series = {New Phytologist}, volume = {236}, journal = {New Phytologist}, number = {4}, doi = {10.1111/nph.18451}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-293724}, pages = {1237 -- 1244}, year = {2022}, abstract = {Green plants are equipped with photoreceptors that are capable of sensing radiation in the ultraviolet-to-blue and the red-to-far-red parts of the light spectrum. However, plant cells are not particularly sensitive to green light (GL), and light which lies within this part of the spectrum does not efficiently trigger the opening of stomatal pores. Here, we discuss the current knowledge of stomatal responses to light, which are either provoked via photosynthetically active radiation or by specific blue light (BL) signaling pathways. The limited impact of GL on stomatal movements provides a unique option to use this light quality to control optogenetic tools. Recently, several of these tools have been optimized for use in plant biological research, either to control gene expression, or to provoke ion fluxes. Initial studies with the BL-activated potassium channel BLINK1 showed that this tool can speed up stomatal movements. Moreover, the GL-sensitive anion channel GtACR1 can induce stomatal closure, even at conditions that provoke stomatal opening in wild-type plants. Given that crop plants in controlled-environment agriculture and horticulture are often cultivated with artificial light sources (i.e. a combination of blue and red light from light-emitting diodes), GL signals can be used as a remote-control signal that controls stomatal transpiration and water consumption.}, language = {en} } @article{WechAnkenbrandBleyetal.2022, author = {Wech, Tobias and Ankenbrand, Markus Johannes and Bley, Thorsten Alexander and Heidenreich, Julius Frederik}, title = {A data-driven semantic segmentation model for direct cardiac functional analysis based on undersampled radial MR cine series}, series = {Magnetic Resonance in Medicine}, volume = {87}, journal = {Magnetic Resonance in Medicine}, number = {2}, doi = {10.1002/mrm.29017}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-257616}, pages = {972-983}, year = {2022}, abstract = {Purpose Image acquisition and subsequent manual analysis of cardiac cine MRI is time-consuming. The purpose of this study was to train and evaluate a 3D artificial neural network for semantic segmentation of radially undersampled cardiac MRI to accelerate both scan time and postprocessing. Methods A database of Cartesian short-axis MR images of the heart (148,500 images, 484 examinations) was assembled from an openly accessible database and radial undersampling was simulated. A 3D U-Net architecture was pretrained for segmentation of undersampled spatiotemporal cine MRI. Transfer learning was then performed using samples from a second database, comprising 108 non-Cartesian radial cine series of the midventricular myocardium to optimize the performance for authentic data. The performance was evaluated for different levels of undersampling by the Dice similarity coefficient (DSC) with respect to reference labels, as well as by deriving ventricular volumes and myocardial masses. Results Without transfer learning, the pretrained model performed moderately on true radial data [maximum number of projections tested, P = 196; DSC = 0.87 (left ventricle), DSC = 0.76 (myocardium), and DSC =0.64 (right ventricle)]. After transfer learning with authentic data, the predictions achieved human level even for high undersampling rates (P = 33, DSC = 0.95, 0.87, and 0.93) without significant difference compared with segmentations derived from fully sampled data. Conclusion A 3D U-Net architecture can be used for semantic segmentation of radially undersampled cine acquisitions, achieving a performance comparable with human experts in fully sampled data. This approach can jointly accelerate time-consuming cine image acquisition and cumbersome manual image analysis.}, language = {en} }