@article{KrebsSolimandoKalogirouetal.2020, author = {Krebs, Markus and Solimando, Antonio Giovanni and Kalogirou, Charis and Marquardt, Andr{\´e} and Frank, Torsten and Sokolakis, Ioannis and Hatzichristodoulou, Georgios and Kneitz, Susanne and Bargou, Ralf and K{\"u}bler, Hubert and Schilling, Bastian and Spahn, Martin and Kneitz, Burkhard}, title = {miR-221-3p Regulates VEGFR2 Expression in High-Risk Prostate Cancer and Represents an Escape Mechanism from Sunitinib In Vitro}, series = {Journal of Clinical Medicine}, volume = {9}, journal = {Journal of Clinical Medicine}, number = {3}, issn = {2077-0383}, doi = {10.3390/jcm9030670}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-203168}, year = {2020}, abstract = {Downregulation of miR-221-3p expression in prostate cancer (PCa) predicted overall and cancer-specific survival of high-risk PCa patients. Apart from PCa, miR-221-3p expression levels predicted a response to tyrosine kinase inhibitors (TKI) in clear cell renal cell carcinoma (ccRCC) patients. Since this role of miR-221-3p was explained with a specific targeting of VEGFR2, we examined whether miR-221-3p regulated VEGFR2 in PCa. First, we confirmed VEGFR2/KDR as a target gene of miR-221-3p in PCa cells by applying Luciferase reporter assays and Western blotting experiments. Although VEGFR2 was mainly downregulated in the PCa cohort of the TCGA (The Cancer Genome Atlas) database, VEGFR2 was upregulated in our high-risk PCa cohort (n = 142) and predicted clinical progression. In vitro miR-221-3p acted as an escape mechanism from TKI in PC3 cells, as displayed by proliferation and apoptosis assays. Moreover, we confirmed that Sunitinib induced an interferon-related gene signature in PC3 cells by analyzing external microarray data and by demonstrating a significant upregulation of miR-221-3p/miR-222-3p after Sunitinib exposure. Our findings bear a clinical perspective for high-risk PCa patients with low miR-221-3p levels since this could predict a favorable TKI response. Apart from this therapeutic niche, we identified a partially oncogenic function of miR-221-3p as an escape mechanism from VEGFR2 inhibition.}, language = {en} } @article{SteinCoulibalyBalimaetal.2020, author = {Stein, Katharina and Coulibaly, Drissa and Balima, Larba Hubert and Goetze, Dethardt and Linsenmair, Karl Eduard and Porembski, Stefan and Stenchly, Kathrin and Theodorou, Panagiotis}, title = {Plant-pollinator networks in savannas of Burkina Faso, West Africa}, series = {Diversity}, volume = {13}, journal = {Diversity}, number = {1}, issn = {1424-2818}, doi = {10.3390/d13010001}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-220157}, year = {2020}, abstract = {West African savannas are severely threatened with intensified land use and increasing degradation. Bees are important for terrestrial biodiversity as they provide native plant species with pollination services. However, little information is available regarding their mutualistic interactions with woody plant species. In the first network study from sub-Saharan West Africa, we investigated the effects of land-use intensity and climatic seasonality on plant-bee communities and their interaction networks. In total, we recorded 5686 interactions between 53 flowering woody plant species and 100 bee species. Bee-species richness and the number of interactions were higher in the low compared to medium and high land-use intensity sites. Bee- and plant-species richness and the number of interactions were higher in the dry compared to the rainy season. Plant-bee visitation networks were not strongly affected by land-use intensity; however, climatic seasonality had a strong effect on network architecture. Null-model corrected connectance and nestedness were higher in the dry compared to the rainy season. In addition, network specialization and null-model corrected modularity were lower in the dry compared to the rainy season. Our results suggest that in our study region, seasonal effects on mutualistic network architecture are more pronounced compared to land-use change effects. Nonetheless, the decrease in bee-species richness and the number of plant-bee interactions with an increase in land-use intensity highlights the importance of savanna conservation for maintaining bee diversity and the concomitant provision of ecosystem services.}, language = {en} } @article{CavalettoFaccoliMarinietal.2020, author = {Cavaletto, Giacomo and Faccoli, Massimo and Marini, Lorenzo and Spaethe, Johannes and Magnani, Gianluca and Rassati, Davide}, title = {Effect of trap color on captures of bark- and wood-boring beetles (Coleoptera; Buprestidae and Scolytinae) and associated predators}, series = {Insects}, volume = {11}, journal = {Insects}, number = {11}, issn = {2075-4450}, doi = {10.3390/insects11110749}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-216325}, year = {2020}, abstract = {Traps baited with attractive lures are increasingly used at entry-points and surrounding natural areas to intercept exotic wood-boring beetles accidentally introduced via international trade. Several trapping variables can affect the efficacy of this activity, including trap color. In this study, we tested whether species richness and abundance of jewel beetles (Buprestidae), bark and ambrosia beetles (Scolytinae), and their common predators (i.e., checkered beetles, Cleridae) can be modified using trap colors different to those currently used for surveillance of jewel beetles and bark and ambrosia beetles (i.e., green or black). We show that green and black traps are generally efficient, but also that many flower-visiting or dark-metallic colored jewel beetles and certain bark beetles are more attracted by other colors. In addition, we show that checkered beetles have color preferences similar to those of their Scolytinae preys, which limits using trap color to minimize their inadvertent removal. Overall, this study confirmed that understanding the color perception mechanisms in wood-boring beetles can lead to important improvements in trapping techniques and thereby increase the efficacy of surveillance programs.}, language = {en} } @article{BoschertKlenkAbtetal.2020, author = {Boschert, Verena and Klenk, Nicola and Abt, Alexander and Raman, Sudha Janaki and Fischer, Markus and Brands, Roman C. and Seher, Axel and Linz, Christian and M{\"u}ller-Richter, Urs D. A. and Bischler, Thorsten and Hartmann, Stefan}, title = {The influence of Met receptor level on HGF-induced glycolytic reprogramming in head and neck squamous cell carcinoma}, series = {International Journal of Molecular Sciences}, volume = {21}, journal = {International Journal of Molecular Sciences}, number = {2}, issn = {1422-0067}, doi = {10.3390/ijms21020471}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-235995}, year = {2020}, abstract = {Head and neck squamous cell carcinoma (HNSCC) is known to overexpress a variety of receptor tyrosine kinases, such as the HGF receptor Met. Like other malignancies, HNSCC involves a mutual interaction between the tumor cells and surrounding tissues and cells. We hypothesized that activation of HGF/Met signaling in HNSCC influences glucose metabolism and therefore substantially changes the tumor microenvironment. To determine the effect of HGF, we submitted three established HNSCC cell lines to mRNA sequencing. Dynamic changes in glucose metabolism were measured in real time by an extracellular flux analyzer. As expected, the cell lines exhibited different levels of Met and responded differently to HGF stimulation. As confirmed by mRNA sequencing, the level of Met expression was associated with the number of upregulated HGF-dependent genes. Overall, Met stimulation by HGF leads to increased glycolysis, presumably mediated by higher expression of three key enzymes of glycolysis. These effects appear to be stronger in Met\(^{high}\)-expressing HNSCC cells. Collectively, our data support the hypothesized role of HGF/Met signaling in metabolic reprogramming of HNSCC.}, language = {en} } @article{KraussVikukYoungetal.2020, author = {Krauss, Jochen and Vikuk, Veronika and Young, Carolyn A. and Krischke, Markus and Mueller, Martin J. and Baerenfaller, Katja}, title = {Epichlo{\"e} endophyte infection rates and alkaloid content in commercially available grass seed mixtures in Europe}, series = {Microorganisms}, volume = {8}, journal = {Microorganisms}, number = {4}, issn = {2076-2607}, doi = {10.3390/microorganisms8040498}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-203323}, pages = {498}, year = {2020}, abstract = {Fungal endophytes of the genus Epichlo{\"e} live symbiotically in cool season grass species and can produce alkaloids toxic to insects and vertebrates, yet reports of intoxication of grazing animals have been rare in Europe in contrast to overseas. However, due to the beneficial resistance traits observed in Epichlo{\"e} infected grasses, the inclusion of Epichlo{\"e} in seed mixtures might become increasingly advantageous. Despite the toxicity of fungal alkaloids, European seed mixtures are rarely tested for Epichlo{\"e} infection and their infection status is unknown for consumers. In this study, we tested 24 commercially available seed mixtures for their infection rates with Epichlo{\"e} endophytes and measured the concentrations of the alkaloids ergovaline, lolitrem B, paxilline, and peramine. We detected Epichlo{\"e} infections in six seed mixtures, and four contained vertebrate and insect toxic alkaloids typical for Epichlo{\"e} festucae var. lolii infecting Lolium perenne. As Epichlo{\"e} infected seed mixtures can harm livestock, when infected grasses become dominant in the seeded grasslands, we recommend seed producers to test and communicate Epichlo{\"e} infection status or avoiding Epichlo{\"e} infected seed mixtures.}, language = {en} } @article{ThornChaoGeorgievetal.2020, author = {Thorn, Simon and Chao, Anne and Georgiev, Konstadin B. and M{\"u}ller, J{\"o}rg and B{\"a}ssler, Claus and Campbell, John L. and Jorge, Castro and Chen, Yan-Han and Choi, Chang-Yong and Cobb, Tyler P. and Donato, Daniel C. and Durska, Ewa and Macdonald, Ellen and Feldhaar, Heike and Fontaine, Jospeh B. and Fornwalt, Paula J. and Hern{\´a}ndez Hern{\´a}ndez, Raquel Mar{\´i}a and Hutto, Richard L. and Koivula, Matti and Lee, Eun-Jae and Lindenmayer, David and Mikusinski, Grzegorz and Obrist, Martin K. and Perl{\´i}k, Michal and Rost, Josep and Waldron, Kaysandra and Wermelinger, Beat and Weiß, Ingmar and Zmihorski, Michal and Leverkus, Alexandro B.}, title = {Estimating retention benchmarks for salvage logging to protect biodiversity}, series = {Nature Communications}, volume = {11}, journal = {Nature Communications}, doi = {10.1038/s41467-020-18612-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-230512}, year = {2020}, abstract = {Forests are increasingly affected by natural disturbances. Subsequent salvage logging, a widespread management practice conducted predominantly to recover economic capital, produces further disturbance and impacts biodiversity worldwide. Hence, naturally disturbed forests are among the most threatened habitats in the world, with consequences for their associated biodiversity. However, there are no evidence-based benchmarks for the proportion of area of naturally disturbed forests to be excluded from salvage logging to conserve biodiversity. We apply a mixed rarefaction/extrapolation approach to a global multi-taxa dataset from disturbed forests, including birds, plants, insects and fungi, to close this gap. We find that 757\% (mean +/- SD) of a naturally disturbed area of a forest needs to be left unlogged to maintain 90\% richness of its unique species, whereas retaining 50\% of a naturally disturbed forest unlogged maintains 73 +/- 12\% of its unique species richness. These values do not change with the time elapsed since disturbance but vary considerably among taxonomic groups. Salvage logging has become a common practice to gain economic returns from naturally disturbed forests, but it could have considerable negative effects on biodiversity. Here the authors use a recently developed statistical method to estimate that ca. 75\% of the naturally disturbed forest should be left unlogged to maintain 90\% of the species unique to the area.}, language = {en} } @article{BalkenholKaltdorfMammadovaBachetal.2020, author = {Balkenhol, Johannes and Kaltdorf, Kristin V. and Mammadova-Bach, Elmina and Braun, Attila and Nieswandt, Bernhard and Dittrich, Marcus and Dandekar, Thomas}, title = {Comparison of the central human and mouse platelet signaling cascade by systems biological analysis}, series = {BMC Genomics}, volume = {21}, journal = {BMC Genomics}, doi = {10.1186/s12864-020-07215-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-230377}, year = {2020}, abstract = {Background Understanding the molecular mechanisms of platelet activation and aggregation is of high interest for basic and clinical hemostasis and thrombosis research. The central platelet protein interaction network is involved in major responses to exogenous factors. This is defined by systemsbiological pathway analysis as the central regulating signaling cascade of platelets (CC). Results The CC is systematically compared here between mouse and human and major differences were found. Genetic differences were analysed comparing orthologous human and mouse genes. We next analyzed different expression levels of mRNAs. Considering 4 mouse and 7 human high-quality proteome data sets, we identified then those major mRNA expression differences (81\%) which were supported by proteome data. CC is conserved regarding genetic completeness, but we observed major differences in mRNA and protein levels between both species. Looking at central interactors, human PLCB2, MMP9, BDNF, ITPR3 and SLC25A6 (always Entrez notation) show absence in all murine datasets. CC interactors GNG12, PRKCE and ADCY9 occur only in mice. Looking at the common proteins, TLN1, CALM3, PRKCB, APP, SOD2 and TIMP1 are higher abundant in human, whereas RASGRP2, ITGB2, MYL9, EIF4EBP1, ADAM17, ARRB2, CD9 and ZYX are higher abundant in mouse. Pivotal kinase SRC shows different regulation on mRNA and protein level as well as ADP receptor P2RY12. Conclusions Our results highlight species-specific differences in platelet signaling and points of specific fine-tuning in human platelets as well as murine-specific signaling differences.}, language = {en} } @article{SchlegelSauer2020, author = {Schlegel, Jan and Sauer, Markus}, title = {Hochaufgel{\"o}ste Visualisierung einzelner Molek{\"u}le auf ganzen Zellen}, series = {BIOspektrum}, volume = {7}, journal = {BIOspektrum}, issn = {0947-0867}, doi = {10.1007/s12268-020-1501-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-232365}, pages = {736-738}, year = {2020}, abstract = {Biological systems are dynamic and three-dimensional but many techniques allow only static and two-dimensional observation of cells. We used three-dimensional (3D) lattice light-sheet single-molecule localization microscopy (dSTORM) to investigate the complex interactions and distribution of single molecules in the plasma membrane of whole cells. Different receptor densities of the adhesion receptor CD56 at different parts of the cell highlight the importance and need of three-dimensional observation and analysis techniques.}, language = {de} } @article{FofanovProkopovKuhletal.2020, author = {Fofanov, Mikhail V. and Prokopov, Dmitry Yu. and Kuhl, Heiner and Schartl, Manfred and Trifonov, Vladimir A.}, title = {Evolution of microRNA biogenesis genes in the sterlet (Acipenser ruthenus) and other polyploid vertebrates}, series = {International Journal of Molecular Sciences}, volume = {21}, journal = {International Journal of Molecular Sciences}, number = {24}, issn = {1422-0067}, doi = {10.3390/ijms21249562}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-285230}, year = {2020}, abstract = {MicroRNAs play a crucial role in eukaryotic gene regulation. For a long time, only little was known about microRNA-based gene regulatory mechanisms in polyploid animal genomes due to difficulties of polyploid genome assembly. However, in recent years, several polyploid genomes of fish, amphibian, and even invertebrate species have been sequenced and assembled. Here we investigated several key microRNA-associated genes in the recently sequenced sterlet (Acipenser ruthenus) genome, whose lineage has undergone a whole genome duplication around 180 MYA. We show that two paralogs of drosha, dgcr8, xpo1, and xpo5 as well as most ago genes have been retained after the acipenserid-specific whole genome duplication, while ago1 and ago3 genes have lost one paralog. While most diploid vertebrates possess only a single copy of dicer1, we strikingly found four paralogs of this gene in the sterlet genome, derived from a tandem segmental duplication that occurred prior to the last whole genome duplication. ago1,3,4 and exportins1,5 look to be prone to additional segment duplications producing up to four-five paralog copies in ray-finned fishes. We demonstrate for the first time exon microsatellite amplification in the acipenserid drosha2 gene, resulting in a highly variable protein product, which may indicate sub- or neofunctionalization. Paralogous copies of most microRNA metabolism genes exhibit different expression profiles in various tissues and remain functional despite the rediploidization process. Subfunctionalization of microRNA processing gene paralogs may be beneficial for different pathways of microRNA metabolism. Genetic variability of microRNA processing genes may represent a substrate for natural selection, and, by increasing genetic plasticity, could facilitate adaptations to changing environments.}, language = {en} } @article{NaseemOsmanoğluKaltdorfetal.2020, author = {Naseem, Muhammad and Osmanoğlu, {\"O}zge and Kaltdorf, Martin and Alblooshi, Afnan Ali M. A. and Iqbal, Jibran and Howari, Fares M. and Srivastava, Mugdha and Dandekar, Thomas}, title = {Integrated framework of the immune-defense transcriptional signatures in the Arabidopsis shoot apical meristem}, series = {International Journal of Molecular Sciences}, volume = {21}, journal = {International Journal of Molecular Sciences}, number = {16}, issn = {1422-0067}, doi = {10.3390/ijms21165745}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-285730}, year = {2020}, abstract = {The growing tips of plants grow sterile; therefore, disease-free plants can be generated from them. How plants safeguard growing apices from pathogen infection is still a mystery. The shoot apical meristem (SAM) is one of the three stem cells niches that give rise to the above ground plant organs. This is very well explored; however, how signaling networks orchestrate immune responses against pathogen infections in the SAM remains unclear. To reconstruct a transcriptional framework of the differentially expressed genes (DEGs) pertaining to various SAM cellular populations, we acquired large-scale transcriptome datasets from the public repository Gene Expression Omnibus (GEO). We identify here distinct sets of genes for various SAM cellular populations that are enriched in immune functions, such as immune defense, pathogen infection, biotic stress, and response to salicylic acid and jasmonic acid and their biosynthetic pathways in the SAM. We further linked those immune genes to their respective proteins and identify interactions among them by mapping a transcriptome-guided SAM-interactome. Furthermore, we compared stem-cells regulated transcriptome with innate immune responses in plants showing transcriptional separation among their DEGs in Arabidopsis. Besides unleashing a repertoire of immune-related genes in the SAM, our analysis provides a SAM-interactome that will help the community in designing functional experiments to study the specific defense dynamics of the SAM-cellular populations. Moreover, our study promotes the essence of large-scale omics data re-analysis, allowing a fresh look at the SAM-cellular transcriptome repurposing data-sets for new questions.}, language = {en} } @article{DollKolbSchnappetal.2020, author = {Doll, Julia and Kolb, Susanne and Schnapp, Linda and Rad, Aboulfazl and R{\"u}schendorf, Franz and Khan, Imran and Adli, Abolfazl and Hasanzadeh, Atefeh and Liedtke, Daniel and Knaup, Sabine and Hofrichter, Michaela AH and M{\"u}ller, Tobias and Dittrich, Marcus and Kong, Il-Keun and Kim, Hyung-Goo and Haaf, Thomas and Vona, Barbara}, title = {Novel loss-of-function variants in CDC14A are associated with recessive sensorineural hearing loss in Iranian and Pakistani patients}, series = {International Journal of Molecular Sciences}, volume = {21}, journal = {International Journal of Molecular Sciences}, number = {1}, issn = {1422-0067}, doi = {10.3390/ijms21010311}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-285142}, year = {2020}, abstract = {CDC14A encodes the Cell Division Cycle 14A protein and has been associated with autosomal recessive non-syndromic hearing loss (DFNB32), as well as hearing impairment and infertile male syndrome (HIIMS) since 2016. To date, only nine variants have been associated in patients whose initial symptoms included moderate-to-profound hearing impairment. Exome analysis of Iranian and Pakistani probands who both showed bilateral, sensorineural hearing loss revealed a novel splice site variant (c.1421+2T>C, p.?) that disrupts the splice donor site and a novel frameshift variant (c.1041dup, p.Ser348Glnfs*2) in the gene CDC14A, respectively. To evaluate the pathogenicity of both loss-of-function variants, we analyzed the effects of both variants on the RNA-level. The splice variant was characterized using a minigene assay. Altered expression levels due to the c.1041dup variant were assessed using RT-qPCR. In summary, cDNA analysis confirmed that the c.1421+2T>C variant activates a cryptic splice site, resulting in a truncated transcript (c.1414_1421del, p.Val472Leufs*20) and the c.1041dup variant results in a defective transcript that is likely degraded by nonsense-mediated mRNA decay. The present study functionally characterizes two variants and provides further confirmatory evidence that CDC14A is associated with a rare form of hereditary hearing loss.}, language = {en} } @article{StojanovićFuchsFiedleretal.2020, author = {Stojanović, Stevan D. and Fuchs, Maximilian and Fiedler, Jan and Xiao, Ke and Meinecke, Anna and Just, Annette and Pich, Andreas and Thum, Thomas and Kunz, Meik}, title = {Comprehensive bioinformatics identifies key microRNA players in ATG7-deficient lung fibroblasts}, series = {International Journal of Molecular Sciences}, volume = {21}, journal = {International Journal of Molecular Sciences}, number = {11}, issn = {1422-0067}, doi = {10.3390/ijms21114126}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-285181}, year = {2020}, abstract = {Background: Deficient autophagy has been recently implicated as a driver of pulmonary fibrosis, yet bioinformatics approaches to study this cellular process are lacking. Autophagy-related 5 and 7 (ATG5/ATG7) are critical elements of macro-autophagy. However, an alternative ATG5/ATG7-independent macro-autophagy pathway was recently discovered, its regulation being unknown. Using a bioinformatics proteome profiling analysis of ATG7-deficient human fibroblasts, we aimed to identify key microRNA (miR) regulators in autophagy. Method: We have generated ATG7-knockout MRC-5 fibroblasts and performed mass spectrometry to generate a large-scale proteomics dataset. We further quantified the interactions between various proteins combining bioinformatics molecular network reconstruction and functional enrichment analysis. The predicted key regulatory miRs were validated via quantitative polymerase chain reaction. Results: The functional enrichment analysis of the 26 deregulated proteins showed decreased cellular trafficking, increased mitophagy and senescence as the major overarching processes in ATG7-deficient lung fibroblasts. The 26 proteins reconstitute a protein interactome of 46 nodes and miR-regulated interactome of 834 nodes. The miR network shows three functional cluster modules around miR-16-5p, miR-17-5p and let-7a-5p related to multiple deregulated proteins. Confirming these results in a biological setting, serially passaged wild-type and autophagy-deficient fibroblasts displayed senescence-dependent expression profiles of miR-16-5p and miR-17-5p. Conclusions: We have developed a bioinformatics proteome profiling approach that successfully identifies biologically relevant miR regulators from a proteomics dataset of the ATG-7-deficient milieu in lung fibroblasts, and thus may be used to elucidate key molecular players in complex fibrotic pathological processes. The approach is not limited to a specific cell-type and disease, thus highlighting its high relevance in proteome and non-coding RNA research.}, language = {en} } @article{HesselbachSeegerSchilcheretal.2020, author = {Hesselbach, Hannah and Seeger, Johannes and Schilcher, Felix and Ankenbrand, Markus and Scheiner, Ricarda}, title = {Chronic exposure to the pesticide flupyradifurone can lead to premature onset of foraging in honeybees Apis mellifera}, series = {Journal of Applied Ecology}, volume = {57}, journal = {Journal of Applied Ecology}, number = {3}, doi = {10.1111/1365-2664.13555}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-212769}, pages = {609-618}, year = {2020}, abstract = {1.Honeybees Apis mellifera and other pollinating insects suffer from pesticides in agricultural landscapes. Flupyradifurone is the active ingredient of a novel pesticide by the name of 'Sivanto', introduced by Bayer AG (Crop Science Division, Monheim am Rhein, Germany). It is recommended against sucking insects and marketed as 'harmless' to honeybees. Flupyradifurone binds to nicotinergic acetylcholine receptors like neonicotinoids, but it has a different mode of action. So far, little is known on how sublethal flupyradifurone doses affect honeybees. 2. We chronically applied a sublethal and field-realistic concentration of flupyradifurone to test for long-term effects on flight behaviour using radio-frequency identification. We examined haematoxylin/eosin-stained brains of flupyradifurone-treated bees to investigate possible changes in brain morphology and brain damage. 3. A field-realistic flupyradifurone dose of approximately 1.0 μg/bee/day significantly increased mortality. Pesticide-treated bees initiated foraging earlier than control bees. No morphological damage in the brain was observed. 4. Synthesis and applications. The early onset of foraging induced by a chronical application of flupyradifurone could be disadvantageous for honeybee colonies, reducing the period of in-hive tasks and life expectancy of individuals. Radio-frequency identification technology is a valuable tool for studying pesticide effects on lifetime foraging behaviour of insects.}, language = {en} } @article{SajkoGrishkovskayaKostanetal.2020, author = {Sajko, Sara and Grishkovskaya, Irina and Kostan, Julius and Graewert, Melissa and Setiawan, Kim and Tr{\"u}bestein, Linda and Niederm{\"u}ller, Korbinian and Gehin, Charlotte and Sponga, Antonio and Puchinger, Martin and Gavin, Anne-Claude and Leonard, Thomas A. and Svergun, Dimitri I. and Smith, Terry K. and Morriswood, Brooke and Djinovic-Carugo, Kristina}, title = {Structures of three MORN repeat proteins and a re-evaluation of the proposed lipid-binding properties of MORN repeats}, series = {PLoS One}, volume = {15}, journal = {PLoS One}, number = {23}, doi = {10.1371/journal.pone.0242677}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-231261}, year = {2020}, abstract = {MORN (Membrane Occupation and Recognition Nexus) repeat proteins have a wide taxonomic distribution, being found in both prokaryotes and eukaryotes. Despite this ubiquity, they remain poorly characterised at both a structural and a functional level compared to other common repeats. In functional terms, they are often assumed to be lipid-binding modules that mediate membrane targeting. We addressed this putative activity by focusing on a protein composed solely of MORN repeats-Trypanosoma brucei MORN1. Surprisingly, no evidence for binding to membranes or lipid vesicles by TbMORN1 could be obtained either in vivo or in vitro. Conversely, TbMORN1 did interact with individual phospholipids. High- and low-resolution structures of the MORN1 protein from Trypanosoma brucei and homologous proteins from the parasites Toxoplasma gondii and Plasmodium falciparum were obtained using a combination of macromolecular crystallography, small-angle X-ray scattering, and electron microscopy. This enabled a first structure-based definition of the MORN repeat itself. Furthermore, all three structures dimerised via their C-termini in an antiparallel configuration. The dimers could form extended or V-shaped quaternary structures depending on the presence of specific interface residues. This work provides a new perspective on MORN repeats, showing that they are protein-protein interaction modules capable of mediating both dimerisation and oligomerisation.}, language = {en} } @article{KraussVikukYoungetal.2020, author = {Krauss, Jochen and Vikuk, Veronika and Young, Carolyn A. and Krischke, Markus and Mueller, Martin J. and Baerenfaller, Katja}, title = {Correction: Krauss, J., et al. Epichlo{\"e} endophyte infection rates and alkaloid content in commercially available grass seed mixtures in Europe. Microorganisms 2020, 8, 498}, series = {Microorganisms}, volume = {8}, journal = {Microorganisms}, number = {10}, issn = {2076-2607}, doi = {10.3390/microorganisms8101616}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-216254}, year = {2020}, abstract = {No abstract available.}, language = {en} } @article{BaurNietzerKunzetal.2020, author = {Baur, Florentin and Nietzer, Sarah L. and Kunz, Meik and Saal, Fabian and Jeromin, Julian and Matschos, Stephanie and Linnebacher, Michael and Walles, Heike and Dandekar, Thomas and Dandekar, Gudrun}, title = {Connecting cancer pathways to tumor engines: a stratification tool for colorectal cancer combining human in vitro tissue models with boolean in silico models}, series = {Cancers}, volume = {12}, journal = {Cancers}, number = {1}, issn = {2072-6694}, doi = {10.3390/cancers12010028}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-193798}, pages = {28}, year = {2020}, abstract = {To improve and focus preclinical testing, we combine tumor models based on a decellularized tissue matrix with bioinformatics to stratify tumors according to stage-specific mutations that are linked to central cancer pathways. We generated tissue models with BRAF-mutant colorectal cancer (CRC) cells (HROC24 and HROC87) and compared treatment responses to two-dimensional (2D) cultures and xenografts. As the BRAF inhibitor vemurafenib is—in contrast to melanoma—not effective in CRC, we combined it with the EGFR inhibitor gefitinib. In general, our 3D models showed higher chemoresistance and in contrast to 2D a more active HGFR after gefitinib and combination-therapy. In xenograft models murine HGF could not activate the human HGFR, stressing the importance of the human microenvironment. In order to stratify patient groups for targeted treatment options in CRC, an in silico topology with different stages including mutations and changes in common signaling pathways was developed. We applied the established topology for in silico simulations to predict new therapeutic options for BRAF-mutated CRC patients in advanced stages. Our in silico tool connects genome information with a deeper understanding of tumor engines in clinically relevant signaling networks which goes beyond the consideration of single drivers to improve CRC patient stratification.}, language = {en} } @article{BeerHelfrichFoerster2020, author = {Beer, Katharina and Helfrich-F{\"o}rster, Charlotte}, title = {Model and Non-model Insects in Chronobiology}, series = {Frontiers in Behavioral Neuroscience}, volume = {14}, journal = {Frontiers in Behavioral Neuroscience}, issn = {1662-5153}, doi = {10.3389/fnbeh.2020.601676}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-218721}, year = {2020}, abstract = {The fruit fly Drosophila melanogaster is an established model organism in chronobiology, because genetic manipulation and breeding in the laboratory are easy. The circadian clock neuroanatomy in D. melanogaster is one of the best-known clock networks in insects and basic circadian behavior has been characterized in detail in this insect. Another model in chronobiology is the honey bee Apis mellifera, of which diurnal foraging behavior has been described already in the early twentieth century. A. mellifera hallmarks the research on the interplay between the clock and sociality and complex behaviors like sun compass navigation and time-place-learning. Nevertheless, there are aspects of clock structure and function, like for example the role of the clock in photoperiodism and diapause, which can be only insufficiently investigated in these two models. Unlike high-latitude flies such as Chymomyza costata or D. ezoana, cosmopolitan D. melanogaster flies do not display a photoperiodic diapause. Similarly, A. mellifera bees do not go into "real" diapause, but most solitary bee species exhibit an obligatory diapause. Furthermore, sociality evolved in different Hymenoptera independently, wherefore it might be misleading to study the social clock only in one social insect. Consequently, additional research on non-model insects is required to understand the circadian clock in Diptera and Hymenoptera. In this review, we introduce the two chronobiology model insects D. melanogaster and A. mellifera, compare them with other insects and show their advantages and limitations as general models for insect circadian clocks.}, language = {en} } @article{BaeHeidrichLevicketal.2020, author = {Bae, Soyeon and Heidrich, Lea and Levick, Shaun R. and Gossner, Martin M. and Seibold, Sebastian and Weisser, Wolfgang W. and Magdon, Paul and Serebryanyk, Alla and B{\"a}ssler, Claus and Sch{\"a}fer, Deborah and Schulze, Ernst-Detlef and Doerfler, Inken and M{\"u}ller, J{\"o}rg and Jung, Kirsten and Heurich, Marco and Fischer, Markus and Roth, Nicolas and Schall, Peter and Boch, Steffen and W{\"o}llauer, Stephan and Renner, Swen C. and M{\"u}ller, J{\"o}rg}, title = {Dispersal ability, trophic position and body size mediate species turnover processes: Insights from a multi-taxa and multi-scale approach}, series = {Diversity and Distribution}, volume = {27}, journal = {Diversity and Distribution}, number = {3}, doi = {10.1111/ddi.13204}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-236117}, pages = {439-453}, year = {2020}, abstract = {Aim: Despite increasing interest in β-diversity, that is the spatial and temporal turnover of species, the mechanisms underlying species turnover at different spatial scales are not fully understood, although they likely differ among different functional groups. We investigated the relative importance of dispersal limitations and the environmental filtering caused by vegetation for local, multi-taxa forest communities differing in their dispersal ability, trophic position and body size. Location: Temperate forests in five regions across Germany. Methods: In the inter-region analysis, the independent and shared effects of the regional spatial structure (regional species pool), landscape spatial structure (dispersal limitation) and environmental factors on species turnover were quantified with a 1-ha grain across 11 functional groups in up to 495 plots by variation partitioning. In the intra-region analysis, the relative importance of three environmental factors related to vegetation (herb and tree layer composition and forest physiognomy) and spatial structure for species turnover was determined. Results: In the inter-region analysis, over half of the explained variation in community composition (23\% of the total explained 35\%) was explained by the shared effects of several factors, indicative of spatially structured environmental filtering. Among the independent effects, environmental factors were the strongest on average over 11 groups, but the importance of landscape spatial structure increased for less dispersive functional groups. In the intra-region analysis, the independent effect of plant species composition had a stronger influence on species turnover than forest physiognomy, but the relative importance of the latter increased with increasing trophic position and body size. Main conclusions: Our study revealed that the mechanisms structuring assemblage composition are associated with the traits of functional groups. Hence, conservation frameworks targeting biodiversity of multiple groups should cover both environmental and biogeographical gradients. Within regions, forest management can enhance β-diversity particularly by diversifying tree species composition and forest physiognomy.}, language = {en} } @article{JessenKressBaluapurietal.2020, author = {Jessen, Christina and Kreß, Julia K. C. and Baluapuri, Apoorva and Hufnagel, Anita and Schmitz, Werner and Kneitz, Susanne and Roth, Sabine and Marquardt, Andr{\´e} and Appenzeller, Silke and Ade, Casten P. and Glutsch, Valerie and Wobser, Marion and Friedmann-Angeli, Jos{\´e} Pedro and Mosteo, Laura and Goding, Colin R. and Schilling, Bastian and Geissinger, Eva and Wolf, Elmar and Meierjohann, Svenja}, title = {The transcription factor NRF2 enhances melanoma malignancy by blocking differentiation and inducing COX2 expression}, series = {Oncogene}, volume = {39}, journal = {Oncogene}, issn = {0950-9232}, doi = {10.1038/s41388-020-01477-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-235064}, pages = {6841-6855}, year = {2020}, abstract = {The transcription factor NRF2 is the major mediator of oxidative stress responses and is closely connected to therapy resistance in tumors harboring activating mutations in the NRF2 pathway. In melanoma, such mutations are rare, and it is unclear to what extent melanomas rely on NRF2. Here we show that NRF2 suppresses the activity of the melanocyte lineage marker MITF in melanoma, thereby reducing the expression of pigmentation markers. Intriguingly, we furthermore identified NRF2 as key regulator of immune-modulating genes, linking oxidative stress with the induction of cyclooxygenase 2 (COX2) in an ATF4-dependent manner. COX2 is critical for the secretion of prostaglandin E2 and was strongly induced by H\(_2\)O\(_2\) or TNFα only in presence of NRF2. Induction of MITF and depletion of COX2 and PGE2 were also observed in NRF2-deleted melanoma cells in vivo. Furthermore, genes corresponding to the innate immune response such as RSAD2 and IFIH1 were strongly elevated in absence of NRF2 and coincided with immune evasion parameters in human melanoma datasets. Even in vitro, NRF2 activation or prostaglandin E2 supplementation blunted the induction of the innate immune response in melanoma cells. Transcriptome analyses from lung adenocarcinomas indicate that the observed link between NRF2 and the innate immune response is not restricted to melanoma.}, language = {en} } @article{IsaacsMikasiObasaetal.2020, author = {Isaacs, Darren and Mikasi, Sello Given and Obasa, Adetayo Emmanuel and Ikomey, George Mondinde and Shityakov, Sergey and Cloete, Ruben and Jacobs, Graeme Brendon}, title = {Structural comparison of diverse HIV-1 subtypes using molecular modelling and docking analyses of integrase inhibitors}, series = {Viruses}, volume = {12}, journal = {Viruses}, number = {9}, issn = {1999-4915}, doi = {10.3390/v12090936}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-211170}, year = {2020}, abstract = {The process of viral integration into the host genome is an essential step of the HIV-1 life cycle. The viral integrase (IN) enzyme catalyzes integration. IN is an ideal therapeutic enzyme targeted by several drugs; raltegravir (RAL), elvitegravir (EVG), dolutegravir (DTG), and bictegravir (BIC) having been approved by the USA Food and Drug Administration (FDA). Due to high HIV-1 diversity, it is not well understood how specific naturally occurring polymorphisms (NOPs) in IN may affect the structure/function and binding affinity of integrase strand transfer inhibitors (INSTIs). We applied computational methods of molecular modelling and docking to analyze the effect of NOPs on the full-length IN structure and INSTI binding. We identified 13 NOPs within the Cameroonian-derived CRF02_AG IN sequences and further identified 17 NOPs within HIV-1C South African sequences. The NOPs in the IN structures did not show any differences in INSTI binding affinity. However, linear regression analysis revealed a positive correlation between the Ki and EC50 values for DTG and BIC as strong inhibitors of HIV-1 IN subtypes. All INSTIs are clinically effective against diverse HIV-1 strains from INSTI treatment-na{\"i}ve populations. This study supports the use of second-generation INSTIs such as DTG and BIC as part of first-line combination antiretroviral therapy (cART) regimens, due to a stronger genetic barrier to the emergence of drug resistance.}, language = {en} } @article{LealSchwebsBriggsetal.2020, author = {Leal, Andrea Zurita and Schwebs, Marie and Briggs, Emma and Weisert, Nadine and Reis, Helena and Lemgruber, Leondro and Luko, Katarina and Wilkes, Jonathan and Butter, Falk and McCulloch, Richard and Janzen, Christian J.}, title = {Genome maintenance functions of a putative Trypanosoma brucei translesion DNA polymerase include telomere association and a role in antigenic variation}, series = {Nucleic Acids Research}, volume = {48}, journal = {Nucleic Acids Research}, number = {17}, doi = {10.1093/nar/gkaa686}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-230579}, pages = {9660-9680}, year = {2020}, abstract = {Maintenance of genome integrity is critical to guarantee transfer of an intact genome from parent to off-spring during cell division. DNA polymerases (Pols) provide roles in both replication of the genome and the repair of a wide range of lesions. Amongst replicative DNA Pols, translesion DNA Pols play a particular role: replication to bypass DNA damage. All cells express a range of translesion Pols, but little work has examined their function in parasites, including whether the enzymes might contribute to host-parasite interactions. Here, we describe a dual function of one putative translesion Pol in African trypanosomes, which we now name TbPolIE. Previously, we demonstrated that TbPolIE is associated with telomeric sequences and here we show that RNAi-mediated depletion of TbPolIE transcripts results in slowed growth, altered DNA content, changes in cell morphology, and increased sensitivity to DNA damaging agents. We also show that TbPolIE displays pronounced localization at the nuclear periphery, and that its depletion leads to chromosome segregation defects and increased levels of endogenous DNA damage. Finally, we demonstrate that TbPolIE depletion leads to deregulation of telomeric variant surface glycoprotein genes, linking the function of this putative translesion DNA polymerase to host immune evasion by antigenic variation.}, language = {en} } @article{StieglervonHoermannMuelleretal.2020, author = {Stiegler, Jonas and von Hoermann, Christian and M{\"u}ller, J{\"o}rg and Benbow, M. Eric and Heurich, Marco}, title = {Carcass provisioning for scavenger conservation in a temperate forest ecosystem}, series = {Ecosphere}, volume = {11}, journal = {Ecosphere}, number = {4}, doi = {10.1002/ecs2.3063}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-218054}, year = {2020}, abstract = {Carrion plays an essential role in shaping the structure and functioning of ecosystems and has far-reaching implications for biodiversity conservation. The change in availability and type of carcasses throughout ecosystems can involve negative effects for scavenging communities. To address this issue, there have been recent conservation management measures of carrion provision in natural systems. However, the optimal conditions under which exposing carcasses to optimize conservation outcomes are still limited. Here, we used camera traps throughout elevational and vegetational gradients to monitor the consumption of 48 deer carcasses over a study period of six years by evaluating 270,279 photographs resulting out of 15,373 trap nights. We detected 17 species visiting carcass deployments, including five endangered species. Our results show that large carcasses, the winter season, and a heterogeneous surrounding habitat enhanced the frequency of carcass visits and the species richness of scavenger assemblages. Contrary to our expectations, carcass species, condition (fresh/frozen), and provision schedule (continuous vs single exposure) did not influence scavenging frequency or diversity. The carcass visitation frequency increased with carcass mass and lower temperatures. The effect of large carcasses was especially pronounced for mesopredators and the Eurasian lynx (Lynx lynx). Lynx were not too influenced in its carrion acquisition by the season, but exclusively preferred remote habitats containing higher forest cover. Birds of prey, mesopredators, and top predators were also positively influenced by the visiting rate of ravens (Corvus corax), whereas no biotic or abiotic preferences were found for wild boars (Sus scrofa). This study provides evidence that any ungulate species of carrion, either in a fresh or in previously frozen condition, attracts a high diversity of scavengers especially during winter, thereby supporting earlier work that carcass provisions may support scavenger communities and endangered species.}, language = {en} } @article{NaseemOthmanFathyetal.2020, author = {Naseem, Muhammad and Othman, Eman M. and Fathy, Moustafa and Iqbal, Jibran and Howari, Fares M. and AlRemeithi, Fatima A. and Kodandaraman, Geema and Stopper, Helga and Bencurova, Elena and Vlachakis, Dimitrios and Dandekar, Thomas}, title = {Integrated structural and functional analysis of the protective effects of kinetin against oxidative stress in mammalian cellular systems}, series = {Scientific Reports}, volume = {10}, journal = {Scientific Reports}, doi = {10.1038/s41598-020-70253-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-231317}, year = {2020}, abstract = {Metabolism and signaling of cytokinins was first established in plants, followed by cytokinin discoveries in all kingdoms of life. However, understanding of their role in mammalian cells is still scarce. Kinetin is a cytokinin that mitigates the effects of oxidative stress in mammalian cells. The effective concentrations of exogenously applied kinetin in invoking various cellular responses are not well standardized. Likewise, the metabolism of kinetin and its cellular targets within the mammalian cells are still not well studied. Applying vitality tests as well as comet assays under normal and hyper-oxidative states, our analysis suggests that kinetin concentrations of 500 nM and above cause cytotoxicity as well as genotoxicity in various cell types. However, concentrations below 100 nM do not cause any toxicity, rather in this range kinetin counteracts oxidative burst and cytotoxicity. We focus here on these effects. To get insights into the cellular targets of kinetin mediating these pro-survival functions and protective effects we applied structural and computational approaches on two previously testified targets for these effects. Our analysis deciphers vital residues in adenine phosphoribosyltransferase (APRT) and adenosine receptor (A2A-R) that facilitate the binding of kinetin to these two important human cellular proteins. We finally discuss how the therapeutic potential of kinetin against oxidative stress helps in various pathophysiological conditions.}, language = {en} } @article{GeorgievChaoCastroetal.2020, author = {Georgiev, Kostadin B. and Chao, Anne and Castro, Jorge and Chen, Yan-Han and Choi, Chang-Yong and Fontaine, Joseph B. and Hutto, Richard L. and Lee, Eun-Jae and M{\"u}ller, J{\"o}rg and Rost, Josep and Żmihorski, Michal and Thorn, Simon}, title = {Salvage logging changes the taxonomic, phylogenetic and functional successional trajectories of forest bird communities}, series = {Journal of Applied Ecology}, volume = {57}, journal = {Journal of Applied Ecology}, number = {6}, doi = {10.1111/1365-2664.13599}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-214887}, pages = {1103 -- 1112}, year = {2020}, abstract = {Salvage logging following natural disturbances may alter the natural successional trajectories of biological communities by affecting the occurrences of species, functional groups and evolutionary lineages. However, few studies have examined whether dissimilarities between bird communities of salvaged and unsalvaged forests are more pronounced for rare species, functional groups and evolutionary lineages than for their more common counterparts. We compiled data on breeding bird assemblages from nine study areas in North America, Europe and Asia, covering a 17-year period following wildfire or windstorm disturbances and subsequent salvage logging. We tested whether dissimilarities based on non-shared species, functional groups and evolutionary lineages (a) decreased or increased over time and (b) the responses of rare, common and dominant species varied, by using a unified statistical framework based on Hill numbers and null models. We found that dissimilarities between bird communities caused by salvage logging persisted over time for rare, common and dominant species, evolutionary lineages and for rare functional groups. Dissimilarities of common and dominant functional groups increased 14 years post disturbance. Salvage logging led to significantly larger dissimilarities than expected by chance. Functional dissimilarities between salvaged and unsalvaged sites were lower compared to taxonomic and phylogenetic dissimilarities. In general, dissimilarities were highest for rare, followed by common and dominant species. Synthesis and applications. Our research demonstrates that salvage logging did not decrease dissimilarities of bird communities over time and taxonomic, functional and phylogenetic dissimilarities persisted for over a decade. We recommend resource managers and decision makers to reserve portions of disturbed forest to enable unmanaged post-disturbance succession of bird communities, particularly to conserve rare species found in unsalvaged disturbed forests.}, language = {en} } @article{KablauBergRutschmannetal.2020, author = {Kablau, Arne and Berg, Stefan and Rutschmann, Benjamin and Scheiner, Ricarda}, title = {Short-term hyperthermia at larval age reduces sucrose responsiveness of adult honeybees and can increase life span}, series = {Apidologie}, volume = {51}, journal = {Apidologie}, issn = {0044-8435}, doi = {10.1007/s13592-020-00743-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-232462}, pages = {570-582}, year = {2020}, abstract = {Honeybees are very sensitive to their breeding temperature. Even slightly lower temperatures during larval development can significantly affect adult behavior. Several devices which are employed for killing the honeybee ectoparasite Varroa destructor rely on short-term hyperthermia in the honeybee hive. The device used here applies 43.7 °C for 2 h, which is highly effective in killing the mites. We study how short-term hyperthermia affects worker brood and behavior of emerging adult bees. Sucrose responsiveness was strongly reduced after treatment of larvae early or late of larval development. Hyperthermia significantly enhanced life span, particularly in bees receiving treated early in larval development. To ask whether increased life span correlated with foraging performance, we used radio frequency identification (RFID). Onset and offset of foraging behavior as well as foraging trip duration and lifetime foraging effort were unaffected by hyperthermia treatment as prepupa.}, language = {en} } @article{MayrPetersEardleyetal.2020, author = {Mayr, Antonia V. and Peters, Marcell K. and Eardley, Connal D. and Renner, Marion E. and R{\"o}der, Juliane and Steffan-Dewenter, Ingolf}, title = {Climate and food resources shape species richness and trophic interactions of cavity-nesting Hymenoptera}, series = {Journal of Biogeography}, volume = {47}, journal = {Journal of Biogeography}, number = {4}, doi = {10.1111/jbi.13753}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-208101}, pages = {854-865}, year = {2020}, abstract = {Aim: Temperature, food resources and top-down regulation by antagonists are considered as major drivers of insect diversity, but their relative importance is poorly understood. Here, we used cavity-nesting communities of bees, wasps and their antagonists to reveal the role of temperature, food resources, parasitism rate and land use as drivers of species richness at different trophic levels along a broad elevational gradient. Location: Mt. Kilimanjaro, Tanzania. Taxon: Cavity-nesting Hymenoptera (Hymenoptera: Apidae, Colletidae, Megachilidae, Crabronidae, Sphecidae, Pompilidae, Vespidae). Methods: We established trap nests on 25 study sites that were distributed over similar large distances in terms of elevation along an elevational gradient from 866 to 1788 m a.s.l., including both natural and disturbed habitats. We quantified species richness and abundance of bees, wasps and antagonists, parasitism rates and flower or arthropod food resources. Data were analysed with generalized linear models within a multi-model inference framework. Results: Elevational species richness patterns changed with trophic level from monotonically declining richness of bees to increasingly humped-shaped patterns for caterpillar-hunting wasps, spider-hunting wasps and antagonists. Parasitism rates generally declined with elevation but were higher for wasps than for bees. Temperature was the most important predictor of both bee and wasp host richness patterns. Antagonist richness patterns were also well predicted by temperature, but in contrast to host richness patterns, additionally by resource abundance and diversity. The conversion of natural habitats through anthropogenic land use, which included biomass removal, agricultural inputs, vegetation structure and percentage of surrounding agricultural habitats, had no significant effects on bee and wasp communities. Main conclusions: Our study underpins the importance of temperature as a main driver of diversity gradients in ectothermic organisms and reveals the increasingly important role of food resources at higher trophic levels. Higher parasitism rates at higher trophic levels and at higher temperatures indicated that the relative importance of bottom-up and top-down drivers of species richness change across trophic levels and may respond differently to future climate change.}, language = {en} } @article{PetersClassenMuelleretal.2020, author = {Peters, Marcell K. and Classen, Alice and M{\"u}ller, J{\"o}rg and Steffan‑Dewenter, Ingolf}, title = {Increasing the phylogenetic coverage for understanding broad-scale diversity gradients}, series = {Oecologia}, volume = {192}, journal = {Oecologia}, issn = {0029-8549}, doi = {10.1007/s00442-020-04615-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-232519}, pages = {629-639}, year = {2020}, abstract = {Despite decades of scientific effort, there is still no consensus on the determinants of broad-scale gradients of animal diver-sity. We argue that general drivers of diversity are unlikely to be found among the narrowly defined taxa which are typically analyzed in studies of broad-scale diversity gradients because ecological niches evolve largely conservatively. This causes constraints in the use of available niche space leading to systematic differences in diversity gradients among taxa. We instead advocate studies of phylogenetically diverse animal communities along broad environmental gradients. Such multi-taxa communities are less constrained in resource use and diversification and may be better targets for testing major classical hypotheses on diversity gradients. Besides increasing the spatial scale in analyses, expanding the phylogenetic coverage may be a second way to achieve higher levels of generality in studies of broad-scale diversity gradients}, language = {en} } @article{ThornSeiboldLeverkusetal.2020, author = {Thorn, Simon and Seibold, Sebastian and Leverkus, Alexandro B and Michler, Thomas and M{\"u}ller, J{\"o}rg and Noss, Reed F and Stork, Nigel and Vogel, Sebastian and Lindenmayer, David B}, title = {The living dead: acknowledging life after tree death to stop forest degradation}, series = {Frontiers in Ecology and the Environment}, volume = {18}, journal = {Frontiers in Ecology and the Environment}, number = {9}, doi = {10.1002/fee.2252}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-218575}, pages = {505 -- 512}, year = {2020}, abstract = {Global sustainability agendas focus primarily on halting deforestation, yet the biodiversity crisis resulting from the degradation of remaining forests is going largely unnoticed. Forest degradation occurs through the loss of key ecological structures, such as dying trees and deadwood, even in the absence of deforestation. One of the main drivers of forest degradation is limited awareness by policy makers and the public on the importance of these structures for supporting forest biodiversity and ecosystem function. Here, we outline management strategies to protect forest health and biodiversity by maintaining and promoting deadwood, and propose environmental education initiatives to improve the general awareness of the importance of deadwood. Finally, we call for major reforms to forest management to maintain and restore deadwood; large, old trees; and other key ecological structures.}, language = {en} } @article{Prieto‐GarciaHartmannReisslandetal.2020, author = {Prieto-Garcia, Cristian and Hartmann, Oliver and Reissland, Michaela and Braun, Fabian and Fischer, Thomas and Walz, Susanne and Sch{\"u}lein-V{\"o}lk, Christina and Eilers, Ursula and Ade, Carsten P. and Calzado, Marco A. and Orian, Amir and Maric, Hans M. and M{\"u}nch, Christian and Rosenfeldt, Mathias and Eilers, Martin and Diefenbacher, Markus E.}, title = {Maintaining protein stability of ∆Np63 via USP28 is required by squamous cancer cells}, series = {EMBO Molecular Medicine}, volume = {12}, journal = {EMBO Molecular Medicine}, number = {4}, doi = {10.15252/emmm.201911101}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-218303}, year = {2020}, abstract = {The transcription factor ∆Np63 is a master regulator of epithelial cell identity and essential for the survival of squamous cell carcinoma (SCC) of lung, head and neck, oesophagus, cervix and skin. Here, we report that the deubiquitylase USP28 stabilizes ∆Np63 and maintains elevated ∆NP63 levels in SCC by counteracting its proteasome-mediated degradation. Impaired USP28 activity, either genetically or pharmacologically, abrogates the transcriptional identity and suppresses growth and survival of human SCC cells. CRISPR/Cas9-engineered in vivo mouse models establish that endogenous USP28 is strictly required for both induction and maintenance of lung SCC. Our data strongly suggest that targeting ∆Np63 abundance via inhibition of USP28 is a promising strategy for the treatment of SCC tumours.}, language = {en} } @article{GrohRoessler2020, author = {Groh, Claudia and R{\"o}ssler, Wolfgang}, title = {Analysis of Synaptic Microcircuits in the Mushroom Bodies of the Honeybee}, series = {Insects}, volume = {11}, journal = {Insects}, number = {1}, issn = {2075-4450}, doi = {10.3390/insects11010043}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-200774}, year = {2020}, abstract = {Mushroom bodies (MBs) are multisensory integration centers in the insect brain involved in learning and memory formation. In the honeybee, the main sensory input region (calyx) of MBs is comparatively large and receives input from mainly olfactory and visual senses, but also from gustatory/tactile modalities. Behavioral plasticity following differential brood care, changes in sensory exposure or the formation of associative long-term memory (LTM) was shown to be associated with structural plasticity in synaptic microcircuits (microglomeruli) within olfactory and visual compartments of the MB calyx. In the same line, physiological studies have demonstrated that MB-calyx microcircuits change response properties after associative learning. The aim of this review is to provide an update and synthesis of recent research on the plasticity of microcircuits in the MB calyx of the honeybee, specifically looking at the synaptic connectivity between sensory projection neurons (PNs) and MB intrinsic neurons (Kenyon cells). We focus on the honeybee as a favorable experimental insect for studying neuronal mechanisms underlying complex social behavior, but also compare it with other insect species for certain aspects. This review concludes by highlighting open questions and promising routes for future research aimed at understanding the causal relationships between neuronal and behavioral plasticity in this charismatic social insect.}, language = {en} } @article{FleischmannGrobRoessler2020, author = {Fleischmann, Pauline N. and Grob, Robin and R{\"o}ssler, Wolfgang}, title = {Kompass im Kopf : wie W{\"u}stenameisen lernen heimzukehren}, series = {Biologie in unserer Zeit}, volume = {50}, journal = {Biologie in unserer Zeit}, number = {2}, issn = {1521-415X}, doi = {10.1002/biuz.202010699}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-219260}, pages = {100-109}, year = {2020}, abstract = {Erfolgreiche r{\"a}umliche Orientierung ist f{\"u}r viele Tiere eine allt{\"a}gliche Herausforderung. Cataglyphis-W{\"u}stenameisen sind bekannt f{\"u}r ihre Navigationsf{\"a}higkeiten, mit deren Hilfe sie nach langen Futtersuchl{\"a}ufen problemlos zum Nest zur{\"u}ckfinden. Wie aber nehmen naive Ameisen ihre Navigationssysteme in Betrieb? Nach mehrw{\"o}chigem Innendienst im dunklen Nest werden sie zu Sammlerinnen bei hellem Sonnenschein. Dieser Wechsel erfordert einen drastischen Wandel im Verhalten sowie neuronale Ver{\"a}nderungen im Gehirn. Erfahrene Ameisen orientieren sich vor allem visuell, sie nutzen einen Himmelskompass und Landmarkenpanoramen. Daher absolvieren naive Ameisen stereotype Lernl{\"a}ufe, um ihren Kompass zu kalibrieren und die Nestumgebung kennenzulernen. W{\"a}hrend der Lernl{\"a}ufe blicken sie wiederholt zum Nesteingang zur{\"u}ck und pr{\"a}gen sich so ihren Heimweg ein. Zur Ausrichtung ihrer Blicke nutzen sie das Erdmagnetfeld als Kompassreferenz. Cataglyphis-Ameisen besitzen hierf{\"u}r einen Magnetkompass, der bislang unbekannt war.}, language = {de} } @article{BiscottiCarducciBaruccaetal.2020, author = {Biscotti, Maria Assunta and Carducci, Federica and Barucca, Marco and Gerdol, Marco and Pallavicini, Alberto and Schartl, Manfred and Canapa, Adriana and Contar Adolfi, Mateus}, title = {The transcriptome of the newt Cynops orientalis provides new insights into evolution and function of sexual gene networks in sarcopterygians}, series = {Scientific Reports}, volume = {10}, journal = {Scientific Reports}, doi = {10.1038/s41598-020-62408-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-227326}, year = {2020}, abstract = {Amphibians evolved in the Devonian period about 400 Mya and represent a transition step in tetrapod evolution. Among amphibians, high-throughput sequencing data are very limited for Caudata, due to their largest genome sizes among terrestrial vertebrates. In this paper we present the transcriptome from the fire bellied newt Cynops orientalis. Data here presented display a high level of completeness, comparable to the fully sequenced genomes available from other amphibians. Moreover, this work focused on genes involved in gametogenesis and sexual development. Surprisingly, the gsdf gene was identified for the first time in a tetrapod species, so far known only from bony fish and basal sarcopterygians. Our analysis failed to isolate fgf24 and foxl3, supporting the possible loss of both genes in the common ancestor of Rhipidistians. In Cynops, the expression analysis of genes described to be sex-related in vertebrates singled out an expected functional role for some genes, while others displayed an unforeseen behavior, confirming the high variability of the sex-related pathway in vertebrates.}, language = {en} } @article{RuedenauerRaubenheimerKessnerBeierleinetal.2020, author = {Ruedenauer, Fabian A. and Raubenheimer, David and Kessner-Beierlein, Daniela and Grund-Mueller, Nils and Noack, Lisa and Spaethe, Johannes and Leonhardt, Sara D.}, title = {Best be(e) on low fat: linking nutrient perception, regulation and fitness}, series = {Ecology Letters}, volume = {23}, journal = {Ecology Letters}, number = {3}, doi = {10.1111/ele.13454}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-208709}, pages = {545-554}, year = {2020}, abstract = {Preventing malnutrition through consuming nutritionally appropriate resources represents a challenge for foraging animals. This is due to often high variation in the nutritional quality of available resources. Foragers consequently need to evaluate different food sources. However, even the same food source can provide a plethora of nutritional and non-nutritional cues, which could serve for quality assessment. We show that bumblebees, Bombus terrestris , overcome this challenge by relying on lipids as nutritional cue when selecting pollen. The bees 'prioritised' lipid perception in learning experiments and avoided lipid consumption in feeding experiments, which supported survival and reproduction. In contrast, survival and reproduction were severely reduced by increased lipid contents. Our study highlights the importance of fat regulation for pollen foraging bumblebees. It also reveals that nutrient perception, nutrient regulation and reproductive fitness can be linked, which represents an effective strategy enabling quick foraging decisions that prevent malnutrition and maximise fitness.}, language = {en} } @article{LeverkusGustafssonLindenmayeretal.2020, author = {Leverkus, Alexandro B and Gustafsson, Lena and Lindenmayer, David B and Castro, Jorge and Rey Benayas, Jos{\´e} Mar{\´i}a and Ranius, Thomas and Thorn, Simon}, title = {Salvage logging effects on regulating ecosystem services and fuel loads}, series = {Frontiers in Ecology and the Environment}, volume = {18}, journal = {Frontiers in Ecology and the Environment}, number = {7}, doi = {10.1002/fee.2219}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-216111}, pages = {391 -- 400}, year = {2020}, abstract = {Salvage logging, or logging after natural disturbances such as wildfires, insect outbreaks, and windstorms, is carried out to recover some of a forest's natural and/or economic capital. However, trade-offs between management objectives and a lack of consensus on the ecological consequences of salvage logging impair science-based decision making on the management of forests after natural disturbances. We conducted a global meta-analysis of the impacts of salvage logging on regulating ecosystem services and on fuel loads, as a frequent post-disturbance objective is preventing subsequent wildfires that could be fueled by the accumulation of dead trunks and branches. Salvage logging affected ecosystem services in a moderately negative way, regardless of disturbance type and severity, time elapsed since salvage logging, intensity of salvage logging, and the group of regulating ecosystem services being considered. However, prolonging the time between natural disturbance and salvage logging mitigated negative effects on regulating ecosystem services. Salvage logging had no overall effect on surface fuels; rather, different fuel types responded differently depending on the time elapsed since salvage logging. Delaying salvage logging by ~2-4 years may reduce negative ecological impacts without affecting surface fuel loads.}, language = {en} } @article{YangHeydarianKozjakPavlovicetal.2020, author = {Yang, Tao and Heydarian, Motaharehsadat and Kozjak-Pavlovic, Vera and Urban, Manuela and Harbottle, Richard P. and Rudel, Thomas}, title = {Folliculin Controls the Intracellular Survival and Trans-Epithelial Passage of Neisseria gonorrhoeae}, series = {Frontiers in Cellular and Infection Microbiology}, volume = {10}, journal = {Frontiers in Cellular and Infection Microbiology}, number = {422}, issn = {2235-2988}, doi = {10.3389/fcimb.2020.00422}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-211372}, year = {2020}, abstract = {Neisseria gonorrhoeae, a Gram-negative obligate human pathogenic bacterium, infects human epithelial cells and causes sexually transmitted diseases. Emerging multi-antibiotic resistant gonococci and increasing numbers of infections complicate the treatment of infected patients. Here, we used an shRNA library screen and next-generation sequencing to identify factors involved in epithelial cell infection. Folliculin (FLCN), a 64 kDa protein with a tumor repressor function was identified as a novel host factor important for N. gonorrhoeae survival after uptake. We further determined that FLCN did not affect N. gonorrhoeae adherence and invasion but was essential for its survival in the cells by modulating autophagy. In addition, FLCN was also required to maintain cell to cell contacts in the epithelial layer. In an infection model with polarized cells, FLCN inhibited the polarized localization of E-cadherin and the transcytosis of gonococci across polarized epithelial cells. In conclusion, we demonstrate here the connection between FLCN and bacterial infection and in particular the role of FLCN in the intracellular survival and transcytosis of gonococci across polarized epithelial cell layers.}, language = {en} } @article{AuerHuegelschaefferFischeretal.2020, author = {Auer, Daniela and H{\"u}gelsch{\"a}ffer, Sophie D. and Fischer, Annette B. and Rudel, Thomas}, title = {The chlamydial deubiquitinase Cdu1 supports recruitment of Golgi vesicles to the inclusion}, series = {Cellular Microbiology}, volume = {22}, journal = {Cellular Microbiology}, number = {5}, doi = {10.1111/cmi.13136}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-208675}, pages = {e13136}, year = {2020}, abstract = {Chlamydia trachomatis is the main cause of sexually transmitted diseases worldwide. As obligate intracellular bacteria Chlamydia replicate in a membrane bound vacuole called inclusion and acquire nutrients for growth and replication from their host cells. However, like all intracellular bacteria, Chlamydia have to prevent eradication by the host's cell autonomous system. The chlamydial deubiquitinase Cdu1 is secreted into the inclusion membrane, facing the host cell cytosol where it deubiquitinates cellular proteins. Here we show that inactivation of Cdu1 causes a growth defect of C. trachomatis in primary cells. Moreover, ubiquitin and several autophagy receptors are recruited to the inclusion membrane of Cdu1-deficient Chlamydia . Interestingly, the growth defect of cdu1 mutants is not rescued when autophagy is prevented. We find reduced recruitment of Golgi vesicles to the inclusion of Cdu1 mutants indicating that vesicular trafficking is altered in bacteria without active deubiquitinase (DUB). Our work elucidates an important role of Cdu1 in the functional preservation of the chlamydial inclusion surface.}, language = {en} } @article{WhisnantJuergesHennigetal.2020, author = {Whisnant, Adam W. and J{\"u}rges, Christopher S. and Hennig, Thomas and Wyler, Emanuel and Prusty, Bhupesh and Rutkowski, Andrzej J. and L'hernault, Anne and Djakovic, Lara and G{\"o}bel, Margarete and D{\"o}ring, Kristina and Menegatti, Jennifer and Antrobus, Robin and Matheson, Nicholas J. and K{\"u}nzig, Florian W. H. and Mastrobuoni, Guido and Bielow, Chris and Kempa, Stefan and Liang, Chunguang and Dandekar, Thomas and Zimmer, Ralf and Landthaler, Markus and Gr{\"a}sser, Friedrich and Lehner, Paul J. and Friedel, Caroline C. and Erhard, Florian and D{\"o}lken, Lars}, title = {Integrative functional genomics decodes herpes simplex virus 1}, series = {Nature Communications}, volume = {11}, journal = {Nature Communications}, doi = {10.1038/s41467-020-15992-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-229884}, year = {2020}, abstract = {The predicted 80 open reading frames (ORFs) of herpes simplex virus 1 (HSV-1) have been intensively studied for decades. Here, we unravel the complete viral transcriptome and translatome during lytic infection with base-pair resolution by computational integration of multi-omics data. We identify a total of 201 transcripts and 284 ORFs including all known and 46 novel large ORFs. This includes a so far unknown ORF in the locus deleted in the FDA-approved oncolytic virus Imlygic. Multiple transcript isoforms expressed from individual gene loci explain translation of the vast majority of ORFs as well as N-terminal extensions (NTEs) and truncations. We show that NTEs with non-canonical start codons govern the subcellular protein localization and packaging of key viral regulators and structural proteins. We extend the current nomenclature to include all viral gene products and provide a genome browser that visualizes all the obtained data from whole genome to single-nucleotide resolution. Here, using computational integration of multi-omics data, the authors provide a detailed transcriptome and translatome of herpes simplex virus 1 (HSV-1), including previously unidentified ORFs and N-terminal extensions. The study also provides a HSV-1 genome browser and should be a valuable resource for further research.}, language = {en} } @article{HabensteinAminiGruebeletal.2020, author = {Habenstein, Jens and Amini, Emad and Gr{\"u}bel, Kornelia and el Jundi, Basil and R{\"o}ssler, Wolfgang}, title = {The brain of Cataglyphis ants: Neuronal organization and visual projections}, series = {Journal of Comparative Neurology}, volume = {528}, journal = {Journal of Comparative Neurology}, number = {18}, doi = {10.1002/cne.24934}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-218212}, pages = {3479 -- 3506}, year = {2020}, abstract = {Cataglyphis ants are known for their outstanding navigational abilities. They return to their inconspicuous nest after far-reaching foraging trips using path integration, and whenever available, learn and memorize visual features of panoramic sceneries. To achieve this, the ants combine directional visual information from celestial cues and panoramic scenes with distance information from an intrinsic odometer. The largely vision-based navigation in Cataglyphis requires sophisticated neuronal networks to process the broad repertoire of visual stimuli. Although Cataglyphis ants have been subjected to many neuroethological studies, little is known about the general neuronal organization of their central brain and the visual pathways beyond major circuits. Here, we provide a comprehensive, three-dimensional neuronal map of synapse-rich neuropils in the brain of Cataglyphis nodus including major connecting fiber systems. In addition, we examined neuronal tracts underlying the processing of visual information in more detail. This study revealed a total of 33 brain neuropils and 30 neuronal fiber tracts including six distinct tracts between the optic lobes and the cerebrum. We also discuss the importance of comparative studies on insect brain architecture for a profound understanding of neuronal networks and their function.}, language = {en} } @article{BoetzlSchueleKraussetal.2020, author = {Boetzl, Fabian A. and Schuele, Maren and Krauss, Jochen and Steffan-Dewenter, Ingolf}, title = {Pest control potential of adjacent agri-environment schemes varies with crop type and is shaped by landscape context and within-field position}, series = {Journal of Applied Ecology}, volume = {57}, journal = {Journal of Applied Ecology}, number = {8}, doi = {10.1111/1365-2664.13653}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-218265}, pages = {1482 -- 1493}, year = {2020}, abstract = {Increasing natural pest control in agricultural fields is an important aim of ecological intensification. Combined effects of landscape context and local placement of agri-environmental schemes (AES) on natural pest control and within-field distance functions of natural pest control agents have rarely been addressed but might affect the distribution of biocontrol providers. Importantly, it is currently unknown whether ecosystem services provided by adjacent AES are consistent for different crop types during crop rotation. In this study, we assessed whether crop rotation from oilseed rape to cereals altered within-field distance functions of ground-dwelling predators from adjacent agri-environmental fields along a gradient in landscape context. Additionally, we recorded crop pests, predation rates, parasitoids as well as crop yields on a total of 30 study sites. Distance functions varied between trophic levels: Carabid richness decreased while densities of carabid beetles, staphylinid beetles as well as crop yields increased towards the field centres. Distance functions of parasitoids and pests were modulated by the amount of semi-natural habitat in the surrounding landscape, while the effects of adjacent AES were limited. Distance decay functions found for ground-dwelling predators in oilseed rape in the previous year were not always present in cereals. Increasing distance to the field edge also increased effects of crop rotation on carabid beetle assemblages, indicating a source habitat function of field edges. Synthesis and applications. Distance functions of natural pest control are not universal and the effects of agri-environmental schemes (AES) in different adjacent crops during crop rotation vary and depend on ecological contrasts. A network of semi-natural habitats and spatially optimized AES habitats can benefit pest control in agricultural landscapes, but constraints as a result of crop type need to be addressed by annually targeted, spatially shifting agri-environment schemes for different crops.}, language = {en} } @article{LapuenteArandjelovicKuehletal.2020, author = {Lapuente, Juan and Arandjelovic, Mimi and K{\"u}hl, Hjalmar and Dieguez, Paula and Boesch, Christophe and Linsenmair, K. Eduard}, title = {Sustainable Peeling of Kapok Tree (Ceiba pentandra) Bark by the Chimpanzees (Pan troglodytes verus) of Como{\´e} National Park, Ivory Coast}, series = {International Journal of Primatology}, volume = {41}, journal = {International Journal of Primatology}, issn = {0164-0291}, doi = {10.1007/s10764-020-00152-9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-232581}, pages = {962-988}, year = {2020}, abstract = {Primates often consume either bark or cambium (inner bark) as a fallback food tocomplete their diet during periods of food scarcity. Wild chimpanzees exhibit greatbehavioral diversity across Africa, as studies of new populations frequently reveal.Since 2014, we have been using a combination of camera traps and indirect signs tostudy the ecology and behavior of wild chimpanzees (Pan troglodytes verus) in Como{\´e}National Park, Ivory Coast, to document and understand the behavioral adaptations thathelp them to survive in a savanna-forest mosaic landscape. We found that Como{\´e}chimpanzees peel the bark of the buttresses of kapok tree (Ceiba pentandra) trees to eatthe cambium underneath. Individuals of all sex/age classes across at least six neigh-boring communities peeled the bark, but only during the late rainy season andbeginning of the dry season, when cambium may represent an important fallback food.Baboons (Papio anubis) also target the same trees but mainly eat the bark itself. Mostof the bark-peeling wounds onCeibatrees healed completely within 2 years, seeminglywithout any permanent damage. We recorded chimpanzees visiting trees in early stagesof wound recovery but leaving them unpeeled. Only 6\% of peeled trees (N= 53) werereexploited after a year, suggesting that chimpanzees waited for the rest of the trees toregrow the bark fully before peeling them again, thus using them sustainably. Manyhuman groups of hunter-gatherers and herders exploited cambium sustainably in thepast. The observation that similar sustainable bark-peeling behavior evolved in bothchimpanzees and humans suggests that it has an important adaptive value in harshenvironments when other food sources become seasonally scarce, by avoiding thedepletion of the resource and keeping it available for periods of scarcity.}, language = {en} } @article{FlemmingHankirErnestusetal.2020, author = {Flemming, S. and Hankir, M. and Ernestus, R.-I. and Seyfried, F. and Germer, C.-T. and Meybohm, P. and Wurmb, T. and Vogel, U. and Wiegering, A.}, title = {Surgery in times of COVID-19 — recommendations for hospital and patient management}, series = {Langenbeck's Archives of Surgery}, volume = {405}, journal = {Langenbeck's Archives of Surgery}, issn = {1435-2443}, doi = {10.1007/s00423-020-01888-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-231766}, pages = {359-364}, year = {2020}, abstract = {Background The novel coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2(SARS-CoV-2), has escalated rapidly to a global pandemic stretching healthcare systems worldwide to their limits. Surgeonshave had to immediately react to this unprecedented clinical challenge by systematically repurposing surgical wards. Purpose To provide a detailed set of guidelines developed in a surgical ward at University Hospital Wuerzburg to safelyaccommodate the exponentially rising cases of SARS-CoV-2 infected patients without compromising the care of emergencysurgery and oncological patients or jeopardizing the well-being of hospital staff. Conclusions The dynamic prioritization of SARS-CoV-2 infected and surgical patient groups is key to preserving life whilemaintaining high surgical standards. Strictly segregating patient groups in emergency rooms, non-intensive care wards andoperating areas prevents viral spread while adequately training and carefully selecting hospital staff allow them to confidentlyand successfully undertake their respective clinical duties.}, language = {en} } @article{StelznerWinklerLiangetal.2020, author = {Stelzner, Kathrin and Winkler, Ann-Cathrin and Liang, Chunguang and Boyny, Aziza and Ade, Carsten P. and Dandekar, Thomas and Fraunholz, Martin J. and Rudel, Thomas}, title = {Intracellular Staphylococcus aureus Perturbs the Host Cell Ca\(^{2+}\) Homeostasis To Promote Cell Death}, series = {mBio}, volume = {11}, journal = {mBio}, doi = {10.1128/mBio.02250-20}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-231448}, year = {2020}, abstract = {The opportunistic human pathogen Staphylococcus aureus causes serious infectious diseases that range from superficial skin and soft tissue infections to necrotizing pneumonia and sepsis. While classically regarded as an extracellular pathogen, S. aureus is able to invade and survive within human cells. Host cell exit is associated with cell death, tissue destruction, and the spread of infection. The exact molecular mechanism employed by S. aureus to escape the host cell is still unclear. In this study, we performed a genome-wide small hairpin RNA (shRNA) screen and identified the calcium signaling pathway as being involved in intracellular infection. S. aureus induced a massive cytosolic Ca\(^{2+}\) increase in epithelial host cells after invasion and intracellular replication of the pathogen. This was paralleled by a decrease in endoplasmic reticulum Ca\(^{2+}\) concentration. Additionally, calcium ions from the extracellular space contributed to the cytosolic Ca2+ increase. As a consequence, we observed that the cytoplasmic Ca\(^{2+}\) rise led to an increase in mitochondrial Ca\(^{2+}\) concentration, the activation of calpains and caspases, and eventually to cell lysis of S. aureus-infected cells. Our study therefore suggests that intracellular S. aureus disturbs the host cell Ca\(^{2+}\) homeostasis and induces cytoplasmic Ca\(^{2+}\) overload, which results in both apoptotic and necrotic cell death in parallel or succession. IMPORTANCE Despite being regarded as an extracellular bacterium, the pathogen Staphylococcus aureus can invade and survive within human cells. The intracellular niche is considered a hideout from the host immune system and antibiotic treatment and allows bacterial proliferation. Subsequently, the intracellular bacterium induces host cell death, which may facilitate the spread of infection and tissue destruction. So far, host cell factors exploited by intracellular S. aureus to promote cell death are only poorly characterized. We performed a genome-wide screen and found the calcium signaling pathway to play a role in S. aureus invasion and cytotoxicity. The intracellular bacterium induces a cytoplasmic and mitochondrial Ca\(^{2+}\) overload, which results in host cell death. Thus, this study first showed how an intracellular bacterium perturbs the host cell Ca\(^{2+}\) homeostasis."}, language = {en} } @article{SarukhanyanShityakovDandekar2020, author = {Sarukhanyan, Edita and Shityakov, Sergey and Dandekar, Thomas}, title = {Rational drug design of Axl tyrosine kinase type I inhibitors as promising candidates against cancer}, series = {Frontiers in Chemistry}, volume = {7}, journal = {Frontiers in Chemistry}, number = {920}, issn = {2296-2646}, doi = {10.3389/fchem.2019.00920}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-199505}, year = {2020}, abstract = {The high level of Axl tyrosine kinase expression in various cancer cell lines makes it an attractive target for the development of anti-cancer drugs. In this study, we carried out several sets of in silico screening for the ATP-competitive Axl kinase inhibitors based on different molecular docking protocols. The best drug-like candidates were identified, after parental structure modifications, by their highest affinity to the target protein. We found that our newly designed compound R5, a derivative of the R428 patented analog, is the most promising inhibitor of the Axl kinase according to the three molecular docking algorithms applied in the study. The molecular docking results are in agreement with the molecular dynamics simulations using the MM-PBSA/GBSA implicit solvation models, which confirm the high affinity of R5 toward the protein receptor. Additionally, the selectivity test against other kinases also reveals a high affinity of R5 toward ABL1 and Tyro3 kinases, emphasizing its promising potential for the treatment of malignant tumors.}, language = {en} } @article{RoemerCosarinskyRoces2020, author = {R{\"o}mer, Daniela and Cosarinsky, Marcela I. and Roces, Flavio}, title = {Selection and spatial arrangement of building materials during the construction of nest turrets by grass-cutting ants}, series = {Royal Society Open Science}, volume = {7}, journal = {Royal Society Open Science}, doi = {10.1098/rsos.201312}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-230458}, year = {2020}, abstract = {Ants build complex nest structures by reacting to simple, local stimuli. While underground nests result from the space generated by digging, some leaf- and grass-cutting ants also construct conspicuous aboveground turrets around nest openings. We investigated whether the selection of specific building materials occurs during turret construction in Acromyrmex fracticornis grass-cutting ants, and asked whether single building decisions at the beginning can modify the final turret architecture. To quantify workers' material selection, the original nest turret was removed and a choice between two artificial building materials, thin and thick sticks, was offered for rebuilding. Workers preferred thick sticks at the very beginning of turret construction, showed varying preferences thereafter, and changed to prefer thin sticks for the upper, final part of the turret, indicating that they selected different building materials over time to create a stable structure. The impact of a single building choice on turret architecture was evaluated by placing artificial beams that divided a colony's nest entrance at the beginning of turret rebuilding. Splitting the nest entrance led to the self-organized construction of turrets with branched galleries ending in multiple openings, showing that the spatial location of a single building material can strongly influence turret morphology.}, language = {en} } @article{MarkertSkoruppaYuetal.2020, author = {Markert, Sebastian M. and Skoruppa, Michael and Yu, Bin and Mulcahy, Ben and Zhen, Mai and Gao, Shangbang and Sendtner, Michael and Stigloher, Christian}, title = {Overexpression of an ALS-associated FUS mutation in C. elegans disrupts NMJ morphology and leads to defective neuromuscular transmission}, series = {Biology Open}, volume = {9}, journal = {Biology Open}, doi = {10.1242/bio.055129}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-230662}, year = {2020}, abstract = {The amyotrophic lateral sclerosis (ALS) neurodegenerative disorder has been associated with multiple genetic lesions, including mutations in the gene for fused in sarcoma (FUS), a nuclear-localized RNA/DNA-binding protein. Neuronal expression of the pathological form of FUS proteins in Caenorhabditis elegans results in mislocalization and aggregation of FUS in the cytoplasm, and leads to impairment of motility. However, the mechanisms by which the mutant FUS disrupts neuronal health and function remain unclear. Here we investigated the impact of ALS-associated FUS on motor neuron health using correlative light and electron microscopy, electron tomography, and electrophysiology. We show that ectopic expression of wild-type or ALS-associated human FUS impairs synaptic vesicle docking at neuromuscular junctions. ALS-associated FUS led to the emergence of a population of large, electron-dense, and filament-filled endosomes. Electrophysiological recording revealed reduced transmission from motor neurons to muscles. Together, these results suggest a pathological effect of ALS-causing FUS at synaptic structure and function organization.}, language = {en} } @article{RoesingSalvadorGuentzeletal.2020, author = {R{\"o}sing, Nils and Salvador, Ellaine and G{\"u}ntzel, Paul and Kempe, Christoph and Burek, Malgorzata and Holzgrabe, Ulrike and Soukhoroukov, Vladimir and Wunder, Christian and F{\"o}rster, Carola}, title = {Neuroprotective Effects of Isosteviol Sodium in Murine Brain Capillary Cerebellar Endothelial Cells (cerebEND) After Hypoxia}, series = {Frontiers in Cellular Neuroscience}, volume = {14}, journal = {Frontiers in Cellular Neuroscience}, issn = {1662-5102}, doi = {10.3389/fncel.2020.573950}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-215013}, year = {2020}, abstract = {Ischemic stroke is one of the leading causes of death worldwide. It damages neurons and other supporting cellular elements in the brain. However, the impairment is not only confined to the region of assault but the surrounding area as well. Besides, it also brings about damage to the blood-brain barrier (BBB) which in turn leads to microvascular failure and edema. Hence, this necessitates an on-going, continuous search for intervention strategies and effective treatment. Of late, the natural sweetener stevioside proved to exhibit neuroprotective effects and therapeutic benefits against cerebral ischemia-induced injury. Its injectable formulation, isosteviol sodium (STVNA) also demonstrated favorable results. Nonetheless, its effects on the BBB have not yet been investigated to date. As such, this present study was designed to assess the effects of STVNA in our in vitro stroke model of the BBB.The integrity and permeability of the BBB are governed and maintained by tight junction proteins (TJPs) such as claudin-5 and occludin. Our data show increased claudin-5 and occludin expression in oxygen and glucose (OGD)-deprived murine brain capillary cerebellar endothelial cells (cerebEND) after STVNa treatment. Likewise, the upregulation of the transmembrane protein integrin-αv was also observed. Finally, cell volume was reduced with the simultaneous administration of STVNA and OGD in cerebEND cells. In neuropathologies such as stroke, the failure of cell volume control is a major feature leading to loss of cells in the penumbra as well as adverse outcomes. Our initial findings, therefore, point to the neuroprotective effects of STVNA at the BBB in vitro, which warrant further investigation for a possible future clinical intervention.}, language = {en} } @article{MemmelSisarioZimmermannetal.2020, author = {Memmel, Simon and Sisario, Dmitri and Zimmermann, Heiko and Sauer, Markus and Sukhorukov, Vladimir L. and Djuzenova, Cholpon S. and Flentje, Michael}, title = {FocAn: automated 3D analysis of DNA repair foci in image stacks acquired by confocal fluorescence microscopy}, series = {BMC Bioinformatics}, volume = {21}, journal = {BMC Bioinformatics}, doi = {10.1186/s12859-020-3370-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-229023}, year = {2020}, abstract = {Background Phosphorylated histone H2AX, also known as gamma H2AX, forms mu m-sized nuclear foci at the sites of DNA double-strand breaks (DSBs) induced by ionizing radiation and other agents. Due to their specificity and sensitivity, gamma H2AX immunoassays have become the gold standard for studying DSB induction and repair. One of these assays relies on the immunofluorescent staining of gamma H2AX followed by microscopic imaging and foci counting. During the last years, semi- and fully automated image analysis, capable of fast detection and quantification of gamma H2AX foci in large datasets of fluorescence images, are gradually replacing the traditional method of manual foci counting. A major drawback of the non-commercial software for foci counting (available so far) is that they are restricted to 2D-image data. In practice, these algorithms are useful for counting the foci located close to the midsection plane of the nucleus, while the out-of-plane foci are neglected. Results To overcome the limitations of 2D foci counting, we present a freely available ImageJ-based plugin (FocAn) for automated 3D analysis of gamma H2AX foci in z-image stacks acquired by confocal fluorescence microscopy. The image-stack processing algorithm implemented in FocAn is capable of automatic 3D recognition of individual cell nuclei and gamma H2AX foci, as well as evaluation of the total foci number per cell nucleus. The FocAn algorithm consists of two parts: nucleus identification and foci detection, each employing specific sequences of auto local thresholding in combination with watershed segmentation techniques. We validated the FocAn algorithm using fluorescence-labeled gamma H2AX in two glioblastoma cell lines, irradiated with 2 Gy and given up to 24 h post-irradiation for repair. We found that the data obtained with FocAn agreed well with those obtained with an already available software (FoCo) and manual counting. Moreover, FocAn was capable of identifying overlapping foci in 3D space, which ensured accurate foci counting even at high DSB density of up to similar to 200 DSB/nucleus. Conclusions FocAn is freely available an open-source 3D foci analyzer. The user-friendly algorithm FocAn requires little supervision and can automatically count the amount of DNA-DSBs, i.e. fluorescence-labeled gamma H2AX foci, in 3D image stacks acquired by laser-scanning microscopes without additional nuclei staining.}, language = {en} } @article{RequierJowanowitschKallniketal.2020, author = {Requier, Fabrice and Jowanowitsch, Kim K. and Kallnik, Katharina and Steffan-Dewenter, Ingolf}, title = {Limitation of complementary resources affects colony growth, foraging behavior, and reproduction in bumble bees}, series = {Ecology}, volume = {101}, journal = {Ecology}, number = {3}, doi = {10.1002/ecy.2946}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-211891}, pages = {e02946}, year = {2020}, abstract = {Resource availability in agricultural landscapes has been disturbed for many organisms, including pollinator species. Abundance and diversity in flower availability benefit bee populations; however, little is known about which of protein or carbohydrate resources may limit their growth and reproductive performance. Here, we test the hypothesis of complementary resource limitation using a supplemental feeding approach. We applied this assumption with bumble bees (Bombus terrestris), assuming that colony growth and reproductive performance should depend on the continuous supply of carbohydrates and proteins, through the foraging for nectar and pollen, respectively. We placed wild-caught bumble bee colonies along a landscape gradient of seminatural habitats, and monitored the colonies' weight, foraging activity, and reproductive performance during the whole colony cycle. We performed supplemental feeding as an indicator of landscape resource limitation, using a factorial design consisting of the addition of sugar water (carbohydrate, supplemented or not) crossed by pollen (protein, supplemented or not). Bumble bee colony dynamics showed a clear seasonal pattern with a period of growth followed by a period of stagnation. Higher abundance of seminatural habitats resulted in reducing the proportion of pollen foragers relative to all foragers in both periods, and in improving the reproductive performance of bumble bees. Interestingly, the supplemental feeding of sugar water positively affected the colony weight during the stagnation period, and the supplemental feeding of pollen mitigated the landscape effect on pollen collection investment. Single and combined supplementation of sugar water and pollen increased the positive effect of seminatural habitats on reproductive performance. This study reveals a potential colimitation in pollen and nectar resources affecting foraging behavior and reproductive performance in bumble bees, and indicates that even in mixed agricultural landscapes with higher proportions of seminatural habitats, bumble bee populations face resource limitations. We conclude that the seasonal management of floral resources must be considered in conservation to support bumble bee populations and pollination services in farmlands.}, language = {en} } @article{BeerHelfrichFoerster2020, author = {Beer, Katharina and Helfrich-F{\"o}rster, Charlotte}, title = {Post-embryonic Development of the Circadian Clock Seems to Correlate With Social Life Style in Bees}, series = {Frontiers in Cell and Developmental Biology}, volume = {8}, journal = {Frontiers in Cell and Developmental Biology}, issn = {2296-634X}, doi = {10.3389/fcell.2020.581323}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-216450}, year = {2020}, abstract = {Social life style can influence many aspects of an animal's daily life, but it has not yet been clarified, whether development of the circadian clock in social and solitary living bees differs. In a comparative study, with the social honey bee, Apis mellifera, and the solitary mason bee, Osmia bicornis, we now found indications for a differentially timed clock development in social and solitary bees. Newly emerged solitary bees showed rhythmic locomotion right away and the number of neurons in the brain that produce the clock component pigment-dispersing factor (PDF) did not change during aging of the adult solitary bee. Honey bees on the other hand, showed no circadian locomotion directly after emergence and the neuronal clock network continued to grow after emergence. Social bees appear to emerge at an early developmental stage at which the circadian clock is still immature, but bees are already able to fulfill in-hive tasks.}, language = {en} } @article{ClassenEardleyHempetal.2020, author = {Classen, Alice and Eardley, Connal D. and Hemp, Andreas and Peters, Marcell K. and Peters, Ralph S. and Ssymank, Axel and Steffan-Dewenter, Ingolf}, title = {Specialization of plant-pollinator interactions increases with temperature at Mt. Kilimanjaro}, series = {Ecology and Evolution}, volume = {10}, journal = {Ecology and Evolution}, number = {4}, doi = {10.1002/ece3.6056}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-235959}, pages = {2182-2195}, year = {2020}, abstract = {Aim: Species differ in their degree of specialization when interacting with other species, with significant consequences for the function and robustness of ecosystems. In order to better estimate such consequences, we need to improve our understanding of the spatial patterns and drivers of specialization in interaction networks. Methods: Here, we used the extensive environmental gradient of Mt. Kilimanjaro (Tanzania, East Africa) to study patterns and drivers of specialization, and robustness of plant-pollinator interactions against simulated species extinction with standardized sampling methods. We studied specialization, network robustness and other network indices of 67 quantitative plant-pollinator networks consisting of 268 observational hours and 4,380 plant-pollinator interactions along a 3.4 km elevational gradient. Using path analysis, we tested whether resource availability, pollinator richness, visitation rates, temperature, and/or area explain average specialization in pollinator communities. We further linked pollinator specialization to different pollinator taxa, and species traits, that is, proboscis length, body size, and species elevational ranges. Results: We found that specialization decreased with increasing elevation at different levels of biological organization. Among all variables, mean annual temperature was the best predictor of average specialization in pollinator communities. Specialization differed between pollinator taxa, but was not related to pollinator traits. Network robustness against simulated species extinctions of both plants and pollinators was lowest in the most specialized interaction networks, that is, in the lowlands. Conclusions: Our study uncovers patterns in plant-pollinator specialization along elevational gradients. Mean annual temperature was closely linked to pollinator specialization. Energetic constraints, caused by short activity timeframes in cold highlands, may force ectothermic species to broaden their dietary spectrum. Alternatively or in addition, accelerated evolutionary rates might facilitate the establishment of specialization under warm climates. Despite the mechanisms behind the patterns have yet to be fully resolved, our data suggest that temperature shifts in the course of climate change may destabilize pollination networks by affecting network architecture.}, language = {en} }