@phdthesis{Busch2009, author = {Busch, Sebastian}, title = {Morphologie und Organisation individueller oktopaminerger Neurone im Gehirn von Drosophila m.}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-36203}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2009}, abstract = {Das biogene Amin Oktopamin moduliert verschiedene Verhaltensweisen in Invertebraten. In verschiedenen Insektenspezies, wie Heuschrecken, Grillen oder Schaben, ist die Funktion und die Architektur des peripheren oktopaminergen Systems auf Einzelzellebene bekannt. Um die zellul{\"a}re Grundlage f{\"u}r die verschiedenen Funktionen von Oktopamin im Zentralnervensystem zu verstehen, ist eine detaillierte Analyse der Architektur des zentralen oktopaminergen Systems notwendig. Innerhalb meiner Doktorarbeit fertigte eine anatomische Karte individueller oktopaminerger Neurone des adulten Hirns von Drosophila an. Ich nutzte die Flp-out Technik, um einzelne oktopaminerge Neurone anzuf{\"a}rben. Anhand ihrer Projektionsmuster konnte ich 28 verschiedene Zelltypen in vier Oktopamin-immunoreaktiven Zellclustern identifizieren. Ihre Morphologie sowie die Verteilung genetischer Marker zeigte, dass die meisten Zelltypen mehrere Neuropile innervieren und dabei eine klare Trennung von Pr{\"a}- und Postsynaptischen Regionen aufweisen. Die Mehrheit der Zelltypen bildet dendritische Verzweigungen in einer bestimmten Region, der posterioren Slope. Jedoch innerviert jeder Zelltyp stereotyp eine bestimmte Kombination von Zielregionen im Gehirn. Das deutet stark darauf hin, dass oktopaminerge Neurone kombinatorisch organisiert sind: Jedes individuelle Neuron scheint Komponente eines spezifischen neuronalen Schaltkreises zu sein. Dabei k{\"o}nnte jeder Zelltyp eine Art "Modul" darstellen, das selektiv bestimmte Funktionen in den jeweiligen Zielregionen moduliert. Das oktopaminerge Mittelliniencluster des Sub{\"o}sophagealen Ganglions zeigt eine besondere zellul{\"a}re Organisation. Es besteht aus gepaarten und ungepaarten Neuronen, die des Zentralgehirn mit extensiven Verzweigungen versorgen. Um die Ordnung hinter dieser komplexen Organisation zu verstehen, wurden die segmentale Organistion der Mittellinienneurone auf Einzelzellebene analysiert und ihre embryonalen Anlagen verglichen. Letzteres erm{\"o}glichte die morphologische Analyse von einzelnen oktopaminergen Mittellinienklonen. OA-VPM und OA-VUM Neurone bilden zusammen drei Subcluster im Sub{\"o}sophagealen Ganglion, die wahrscheinlich die drei gnathalen Neuromere repr{\"a}sentieren. Alle OA-VUM Neurone stammen von der embryonalen Mittellinie ab. In den mandibularen und maxillaren Neuromeren formen sie morphologisch identische Zelltypen, mit stereotypen Innervationsmustern. OA-VPM Neurone gehen nicht aus der embryonalen Mittellinie hervor und sind nicht segmental dupliziert. Diese Arbeit vermittelt nicht nur einen Eindruck {\"u}ber die Architektur individueller oktopaminerger Neurone, sondern auch {\"u}ber die Organisation des oktopaminergen Systems auf Einzelzellebene.}, subject = {Drosophila}, language = {de} } @phdthesis{Franz2009, author = {Franz, Mirjam}, title = {Analyse der Hangover Funktion w{\"a}hrend der Entwicklung von Ethanol-induziertem Verhalten}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-35591}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2009}, abstract = {Die Entwicklung von Ethanoltoleranz ist ein Indikator f{\"u}r eine m{\"o}gliche Abh{\"a}ngigkeit von Alkohol. Der genaue molekulare Mechanismus der Ethanoltoleranzentwicklung ist jedoch nicht bekannt. Drosophila erm{\"o}glicht die molekulare und ph{\"a}notypische Untersuchung von verschiedenen Mutanten mit ver{\"a}nderter Toleranz und kann so zu einem besseren Verst{\"a}ndnis beitragen. Die hangAE10 Mutante entwickelt eine reduzierte Ethanoltoleranz, wobei dieser Ph{\"a}notyp auf Defekte in der zellul{\"a}ren Stressantwort zur{\"u}ckzuf{\"u}hren ist. F{\"u}r ein besseres Verst{\"a}ndnis, in welchen molekularen Mechanismen bzw. Signalwegen HANG wirkt, wurde die Funktion des Proteins auf zellul{\"a}rer Ebene analysiert und m{\"o}gliche Zielgene charakterisiert. Die auff{\"a}llige Proteinstruktur von HANG spricht f{\"u}r eine Interaktion mit Nukleins{\"a}uren. Immunhistochemische Analysen von ektopisch exprimiertem Hangover Protein ergaben, dass dieses nicht mit der DNA co-lokalisiert und auch nicht an polyt{\"a}nen Chromosomen nachgewiesen werden kann. Die ektopische Expression von HANG in Speicheldr{\"u}senzellen zeigte eine punktf{\"o}rmige Verteilung des Proteins innerhalb des Zellkerns. Dieses punktf{\"o}rmige Expressionsmuster wird h{\"a}ufig in RNA-bindenden Proteinen gefunden. Deshalb wurden Co-Lokalisationsstudien von HANG mit Markern f{\"u}r RNAmodifizierende Proteine durchgef{\"u}hrt. Dabei wurde keine Interaktion mit verschiedenen Markerproteinen des Spleißapparates gefunden. Mithilfe von in vitro Experimenten konnte aber die Bindung von RNA an bestimmten Hangover Proteinbereichen nachgewiesen werden Diese Ergebnisse legen nahe, dass HANG eine RNA-regulierende Funktion hat. In einem cDNA Microarray Experiment wurde das Gen dunce als m{\"o}gliches Zielgen von Hangover identifiziert. Das Gen dunce kodiert f{\"u}r eine Phosphodiesterase, welche spezifisch cAMP hydrolysiert. Zur Best{\"a}tigung der cDNA Microarray Experimente wurden die dnc Transkriptunterschiede in Wildtyp und hangAE10 Mutante mithilfe von semiquantitativer RT-PCR f{\"u}r jede der vier Gruppen untersucht. Dabei konnte eine Reduktion der dncRMRA-Transkriptgruppe in hangAE10 Mutanten nachgewiesen werden. Aufgrund dieser Ergebnisse wurde die dncRMRA -spezifische dnc\&\#916;143 Mutante hergestellt und auf Verhaltensebene analysiert. Die Experimente zeigten, dass sowohl dnc1, als auch die dnc\&\#916;143 Mutante eine reduzierte Ethanoltoleranz und Defekte in der zellul{\"a}ren Stressantwort aufweisen. F{\"u}r die Rettung der reduzierten Toleranz von hangAE10 und dnc\&\#916;143 in dncRMRA-spezifischen Neuronen wurde die dncRMRA Promotor- GAL4 Linie hergestellt. Die reduzierte Ethanoltoleranz der dnc\&\#916;143 Mutanten konnte {\"u}ber die Expression von UAS-dnc mit der dncRMRA-GAL4 Linie auf Wildtyp Level gerettet werden. Die reduzierte Toleranz der hangAE10 Mutante konnte mithilfe derselben GAL4 Linie verbessert werden. Dies beweist, dass in beiden Mutanten dieselben Zellen f{\"u}r die Entwicklung von Ethanoltoleranz ben{\"o}tigt werden und sie wahrscheinlich in der gleichen Signaltransduktionskaskade eine Funktion haben. Aufgrund der Anf{\"a}lligkeit der UAS/ GAL4 Systems gegen{\"u}ber Hitze war es außerdem nicht m{\"o}glich die Defekte der zellul{\"a}ren Stressantwort von dnc\&\#916;143 bzw. hangAE10 Fliegen zu retten. Die Rettung der reduzierten Ethanoltoleranz der dcn\&\#916;143 Mutante f{\"u}hrte außerdem zu der Vermutung, dass die cAMP Regulation eine wichtige Funktion bei der Ethanoltoleranzentwicklung hat. {\"U}ber die Expression von cAMP-regulierenden Proteinen in dncRMRA-spezifischen Neuronen wurde der Einfluss von cAMP bei Ethanol-induziertem Verhalten {\"u}berpr{\"u}ft. Bei der {\"U}berexpression von dunce und rutabaga konnte weder eine Ver{\"a}nderung f{\"u}r die Ethanolsensitivit{\"a}t, noch f{\"u}r die Toleranzentwicklung festgestellt werden. Eine Erkl{\"a}rung hierf{\"u}r w{\"a}re, dass Ver{\"a}nderungen in der cAMP Konzentration {\"u}ber R{\"u}ckkopplungsmechanismen zwischen Dunce und Rutabaga ausgeglichen werden k{\"o}nnen. F{\"u}r eine genauere Aussage m{\"u}sste jedoch die cAMP Konzentration in diesen Fliegen gemessen werden. Die {\"U}berexpression von pka- in dncRMRA spezifischen Zellen f{\"u}hrt zu einer erh{\"o}hten Ethanolresistenz. Das bedeutet, dass die Modulation der cAMP Konzentration durch dunce und rutabaga in dncRMRA spezifischen Zellen keinen Einfluss auf Ethanol-induziertes Verhalten hat, wohingegen die St{\"a}rke der cAMP vermittelten Signalverarbeitung {\"u}ber die cAMP-abh{\"a}ngige PKA zu Ver{\"a}nderungen im Verhalten f{\"u}hrt. F{\"u}r Mutanten des cAMP Signalweges ist außerdem bekannt, dass sie Defekte im olfaktorischen Lernen bzw. Ged{\"a}chtnis aufweisen. Deshalb wurden die dnc\&\#916;143, dnc1 und hangAE10 Mutanten in diesem Paradigma getestet. Sowohl dnc1, als auch dnc\&\#916;143 Fliegen zeigten einen reduzierten Performance Index f{\"u}r das zwei und 30 Minuten Ged{\"a}chtnis. Nach 180 Minuten verhielten sich die dnc\&\#916;143 Mutanten nicht mehr unterschiedlich zum Wildtyp, die dnc1 Mutante zeigte jedoch immer noch eine Reduktion des Performance Index im Vergleich zur Kontrolle. Demnach ist in dnc\&\#916;143 Mutanten nur das Kurzzeitged{\"a}chtnis betroffen, wohingegen hangAE10 Mutanten keine Reduktion des Performance Index f{\"u}r das olfaktorische Kurzzeitged{\"a}chtnis aufweisen. Die unterschiedlichen Ergebnisse der beiden Mutanten in der Ged{\"a}chtnisentwicklung deuten außerdem daraufhin, dass Lernen und Ged{\"a}chtnis in dnc\&\#916;143 und hangAE10 Mutanten von der Toleranzentwicklung unabh{\"a}ngig {\"u}ber unterschiedliche cAMP-abh{\"a}ngige Signaltransduktionskaskaden reguliert werden.}, subject = {Taufliege}, language = {de} } @phdthesis{Voeller2009, author = {V{\"o}ller, Thomas}, title = {Visualisierung und Manipulation neuronaler Aktivit{\"a}ten im Gehirn von Drosophila melanogaster}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-35589}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2009}, abstract = {In dieser Arbeit wurden zwei Techniken zur Analyse der Funktion diverser Neuronen in Drosophila melanogaster angewendet. Im ersten Teil wurde mittels in-vivo Calcium Imaging Technik unter Verwendung des Calciumsensors Cameleon neuronale Aktivit{\"a}t entlang des olfaktorischen Signalweges registriert. Hierbei wurde die neuronale Repr{\"a}sentation der Duftidentit{\"a}t und der Duftintensit{\"a}t untersucht. In Bezug auf diese Fragestellung wurde die Datenverarbeitung und Datenanalyse weiterentwickelt und standardisiert. Die Experimente f{\"u}hrten zu dem Ergebnis, dass duftspezifische Aktivit{\"a}tsmuster auf der Ebene des Antennallobus sehr gut unterscheidbar sind. Manche Aktivit{\"a}tsmuster der pr{\"a}sentierten D{\"u}fte zeigten interessanterweise einen hohen {\"A}hnlichkeitsgrad, wohingegen andere un{\"a}hnlich waren. In h{\"o}heren Gehirnzentren wie den Orten der terminalen Aborisationen der Projektionsneurone oder den Pilzk{\"o}rper Kenyonzellen liegt eine starke Variabilit{\"a}t der duftevozierten Aktivit{\"a}tsmuster vor, was generelle Interpretationen unm{\"o}glich macht und h{\"o}chstens Vergleiche innerhalb eines Individuums zul{\"a}sst. Des Weiteren konnte gezeigt werden, dass die Calciumsignale in den Rezeptorneuronen sowie pr{\"a}- und postsynaptisch in den Projektionsneuronen bei Erh{\"o}hung der Konzentration der verschiedenen pr{\"a}sentierten D{\"u}fte {\"u}ber einen Bereich von mindestens drei Gr{\"o}ßenordnungen ansteigen. In den Kenyonzellen des Pilzk{\"o}rper-Calyx und der Pilzk{\"o}rper-Loben ist diese Konzentrationsabh{\"a}ngigkeit weniger deutlich ausgepr{\"a}gt und im Falle der Loben nur f{\"u}r bestimmte D{\"u}fte detektierbar. Eine Best{\"a}tigung des postulierten „sparsed code" der Duftpr{\"a}sentation in den Pilzk{\"o}rpern konnte in dieser Arbeit nicht erbracht werden, was m{\"o}glicherweise daran liegt, dass eine Einzelzellaufl{\"o}sung mit der verwendeten Technik nicht erreicht werden kann. Im zweiten Teil dieser Arbeit sollte durch die Nutzung des lichtabh{\"a}ngigen Kationenkanals Channelrhodopsin-2 der Frage nachgegangen werden, ob bestimmte modulatorische Neurone die verst{\"a}rkenden Eigenschaften eines bestrafenden oder belohnenden Stimulus vermitteln. Die lichtinduzierte Aktivierung von Channelrhodopsin-2 exprimierenden dopaminergen Neuronen als Ersatz f{\"u}r einen aversiven Reiz f{\"u}hrte bei einer olfaktorischen Konditionierung bei Larven zur Bildung eines aversiven assoziativen Ged{\"a}chtnisses. Im Gegensatz dazu induzierte die Aktivierung von Channelrhodopsin-2 in oktopaminergen/tyraminergen Neuronen als Ersatz f{\"u}r einen appetitiven Reiz ein appetitives assoziatives Ged{\"a}chtnis. Diese Ergebnisse zeigen, dass dopaminerge Neurone bei Larven aversives Duftlernen, oktopaminerge/tyraminerge Neurone dagegen appetitives Duftlernen induzieren.}, subject = {Taufliege}, language = {de} } @phdthesis{Triphan2009, author = {Triphan, Tilman}, title = {The Central Control of Gap Climbing Behaviour in Drosophila melanogaster}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-43666}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2009}, abstract = {In this work, a behavioural analysis of different mutants of the fruit fly Drosophila melanogaster has been carried out. Primarily, the gap climbing behaviour (Pick \& Strauss, 2005) has been assayed as it lends itself for the investigation of decision making processes and the neuronal basis of adaptive behaviour. Furthermore it shows how basic motor actions can be combined into a complex motor behaviour. Thanks to the neurogenetic methods, Drosophila melanogaster has become an ideal study object for neurobiological questions. Two different modules of climbing control have been examined in detail. For the decision making, the mutant climbing sisyphus was analysed. While wild-type flies adapt the initiation of climbing behaviour to the width of the gap and the probability for a successful transition. climbing sisyphus flies initiate climbing behaviour even at clearly insurmountable gap widths. The climbing success itself is not improved in comparison to the wild-type siblings. The mutant climbing sisyphus is a rare example of a hyperactive mutant besides many mutants that show a reduced activity. Basic capabilities in vision have been tested in an optomotor and a distance-estimation paradigm. Since they are not affected, a defect in decision making is most probably the cause of this behavioural aberration. A second module of climbing control is keeping up orientation towards the opposite side of the gap during the execution of climbing behaviour. Mutants with a structural defect in the protocerebral bridge show abnormal climbing behaviour. During the climbing attempt, the longitudinal body axis does not necessarily point into the direction of the opposite side. Instead, many climbing events are initiated at the side edge of the walking block into the void and have no chance to ever succeed. The analysed mutants are not blind. In one of the mutants, tay bridge1 (tay1) a partial rescue attempt used to map the function in the brain succeeded such that the state of the bridge was restored. That way, a visual targeting mechanism has been activated, allowing the flies to target the opposite side. When the visibility of the opposing side was reduced, the rescued flies went back to a tay1 level of directional scatter. The results are in accord with the idea that the bridge is a central constituent of the visual targeting mechanism. The tay1 mutant was also analysed in other behavioural paradigms. A reduction in walking speed and walking activity in this mutant could be rescued by the expression of UAS-tay under the control of the 007Y-GAL4 driver line, which concomitantly restores the structure of the protocerebral bridge. The separation of bridge functions from functions of other parts of the brain of tay1 was accomplished by rescuing the reduced optomotor compensation in tay1 by the mb247-GAL4>UAS-tay driver. While still having a tay1-like protocerebral bridge, mb247-GAL4 rescue flies are able to compensate at wild-type levels. An intact compensation is not depended on the tay expression in the mushroom bodies, as mushroom body ablated flies with a tay1 background and expression of UAS-tay under the control of mb247-GAL4 show wild-type behaviour as well. The most likely substrate for the function are currently unidentified neurons in the fan-shaped body, that can be stained with 007Y-GAL4 and mb247-GAL4 as well.}, subject = {Taufliege}, language = {en} }