@phdthesis{Beck2016, author = {Beck, Katherina}, title = {Einfluss von RSK auf die Aktivit{\"a}t von ERK, den axonalen Transport und die synaptische Funktion in Motoneuronen von \(Drosophila\) \(melanogaster\)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-130717}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {In dieser Arbeit sollte die Funktion von RSK in Motoneuronen von Drosophila untersucht werden. Mutationen im RSK2-Gen verursachen das Coffin-Lowry-Syndrom (CLS), das durch mentale Retardierung charakterisiert ist. RSK2 ist haupts{\"a}chlich in Regionen des Gehirns exprimiert, in denen Lernen und Ged{\"a}chtnisbildung stattfinden. In M{\"a}usen und Drosophila, die als Modellorganismen f{\"u}r CLS dienen, konnten auf makroskopischer Ebene keine Ver{\"a}nderungen in den Hirnstrukturen gefunden werden, dennoch wurden in verschiedenen Verhaltensstudien Defekte im Lernen und der Ged{\"a}chtnisbildung beobachtet. Die synaptische Plastizit{\"a}t und die einhergehenden Ver{\"a}nderungen in den Eigenschaften der Synapse sind fundamental f{\"u}r adaptives Verhalten. Zur Analyse der synaptischen Plastizit{\"a}t eignet sich das neuromuskul{\"a}re System von Drosophila als Modell wegen des stereotypen Innervierungsmusters und der Verwendung ionotroper Glutamatrezeptoren, deren Untereinheiten homolog sind zu den Untereinheiten der Glutamatrezeptoren des AMPA-Typs aus S{\"a}ugern, die wesentlich f{\"u}r die Bildung von LTP im Hippocampus sind. Zun{\"a}chst konnte gezeigt werden, dass RSK in den Motoneuronen von Drosophila an der pr{\"a}synaptischen Seite lokalisiert ist, wodurch RSK eine Synapsen-spezifische Funktion aus{\"u}ben k{\"o}nnte. Morphologische Untersuchungen der Struktur der neuromuskul{\"a}ren Synapsen konnten aufzeigen, dass durch den Verlust von RSK die Gr{\"o}ße der neuromuskul{\"a}ren Synapse, der Boutons sowie der Aktiven Zonen und Glutamatrezeptorfelder reduziert ist. Obwohl mehr Boutons gebildet werden, sind weniger Aktive Zonen und Glutamatrezeptorfelder in der neuromuskul{\"a}ren Synapse enthalten. RSK reguliert die synaptische Transmission, indem es die postsynaptische Sensitivit{\"a}t, nicht aber die Freisetzung der Neurotransmitter an der pr{\"a}synaptischen Seite beeinflusst, obwohl in immunhistochemischen Analysen eine postsynaptische Lokalisierung von RSK nicht nachgewiesen werden konnte. RSK ist demnach an der Regulation der synaptischen Plastizit{\"a}t glutamaterger Synapsen beteiligt. Durch immunhistochemische Untersuchungen konnte erstmals gezeigt werden, dass aktiviertes ERK an der pr{\"a}synaptischen Seite lokalisiert ist und diese synaptische Lokalisierung von RSK reguliert wird. Dar{\"u}ber hinaus konnte in dieser Arbeit nachgewiesen werden, dass durch den Verlust von RSK hyperaktiviertes ERK in den Zellk{\"o}rpern der Motoneurone vorliegt. RSK wird durch den ERK/MAPK-Signalweg aktiviert und {\"u}bernimmt eine Funktion sowohl als Effektorkinase als auch in der Negativregulation des Signalwegs. Demnach dient RSK in den Zellk{\"o}rpern der Motoneurone als Negativregulator des ERK/MAPK-Signalwegs. Dar{\"u}ber hinaus k{\"o}nnte RSK die Verteilung von aktivem ERK in den Subkompartimenten der Motoneurone regulieren. Da in vorangegangenen Studien gezeigt werden konnte, dass ERK an der Regulation der synaptischen Plastizit{\"a}t beteiligt ist, indem es die Insertion der AMPA-Rezeptoren zur Bildung der LTP reguliert, sollte in dieser Arbeit aufgekl{\"a}rt werden, ob der Einfluss von RSK auf die synaptische Plastizit{\"a}t durch seine Funktion als Negativregulator von ERK zustande kommt. Untersuchungen der genetischen Interaktion von rsk und rolled, dem Homolog von ERK in Drosophila, zeigten, dass die durch den Verlust von RSK beobachtete reduzierte Gesamtzahl der Aktiven Zonen und Glutamatrezeptorfelder der neuromuskul{\"a}ren Synapse auf die Funktion von RSK als Negativregulator von ERK zur{\"u}ckzuf{\"u}hren ist. Die Gr{\"o}ße der neuromuskul{\"a}ren Synapse sowie die Gr{\"o}ße der Aktiven Zonen und Glutamatrezeptorfelder beeinflusst RSK allerdings durch seine Funktion als Effektorkinase des ERK/MAPK-Signalwegs. Studien des axonalen Transports von Mitochondrien zeigten, dass dieser in vielen neuropathologischen Erkrankungen beeintr{\"a}chtigt ist. Die durchgef{\"u}hrten Untersuchungen des axonalen Transports in Motoneuronen konnten eine neue Funktion von RSK in der Regulation des axonalen Transports aufdecken. In den Axonen der Motoneurone von RSK-Nullmutanten wurden BRP- und CSP-Agglomerate nachgewiesen. RSK k{\"o}nnte an der Regulation des axonalen Transports von pr{\"a}synaptischem Material beteiligt sein. Durch den Verlust von RSK wurden weniger Mitochondrien in anterograder Richtung entlang dem Axon transportiert, daf{\"u}r verweilten mehr Mitochondrien in station{\"a}ren Phasen. Diese Ergebnisse zeigen, dass auch der anterograde Transport von Mitochondrien durch den Verlust von RSK beeintr{\"a}chtigt ist.}, subject = {Taufliege}, language = {de} } @phdthesis{Koenig2016, author = {K{\"o}nig, Sebastian}, title = {Spatially selective visual attention in Drosophila melanogaster}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-134452}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {Finding the right behavior at the right time is one of the major tasks of brains. In a natural scenery there is often an abundance of stimuli present and the brain has to separate the relevant from the irrelevant ones. Selective visual attention (SVA) is a property of higher visual systems that achieves this separation, as it allows to '[…] focus on one source of sensory input to the exclusion of others' (Luck and Mangun, 1996). There are probably several forms of SVA depending upon the criteria used for the separation, such as salience, color, location in space, novelty, or motion. Many studies have investigated SVA in humans and non-human primates. However, complex functions like attention were initially not expected to be already implemented in the brains of simple organisms like Drosophila. After a first demonstration of selective attention in the fly (Wolf and Heisenberg, 1980), it took some time until other studies included attentional mechanisms in their argumentation to explain certain behaviors of Drosophila. However, their definition and characterization of attention differed and often was ambiguous. Here, one particular form, spatially selective visual attention in the fly Drosophila is investigated. It has been shown earlier that the fly spontaneously may restrict its behavioral responses in stationary flight to the visual stimuli on one side of the visual field. On the basis of experiments of Sareen et al., (2011) it has been conjectured that the fly has a focus of attention (FoA) and that the fly responds to the visual stimuli within this area of the visual field. Whether the FoA is the adequate concept for this spatial property of SVA in the fly needs to be further discussed and is a subject also of the present study. At this stage, the concept will be used in the description of the new results expanding the characterization of SVA. This study continued the investigation of SVA during tethered flight with variable but controlled visual input and an automated primary data evaluation. This standardized paradigm allowed for analysis of wild-type behavior as well as for a comparison of several mutant and pharmacologically manipulated strains to the wild-type. Some properties of human SVA like the occurrence of externally as well as internally caused shifts of attention were found in Drosophila and it could be shown, that SVA in the fly can be externally guided and has an attention span. Additionally, a neurotransmitter and proteins, which play a significant role in SVA were discovered. Based on this, the genetic tools available for Drosophila provided the means to a first examination of cells and circuits involved in SVA. Finally, the free walk behavior of flies that had been shown to have compromised SVA was characterized. The results suggested that the observed phenotypes of SVA were not behavior specific. Covert shifts of the FoA were investigated. The FoA can be externally guided by visual cues to one or the other side of the visual field and even after the cue has disappeared it remains there for <4s. An intriguing finding of this study is the fact, that the quality of the cue determines whether it is attractive or repellent. For example a cue can be changed from being repellent (negative) to being attractive (positive) by changing its oscillation amplitude from 4° to 2°. Testing the effectiveness of cues in the upper and lower visual field separately, revealed that the perception of a cue by the fly is not exclusively based on a sum of its specifications. Because positive cueing did not have an after-effect in each of the two half-fields alone, but did so if the cue was shown in both, the fly seems to evaluate the cue for each combination of parameters specifically. Whether this evaluation of the cue changed on a trial-to-trial basis or if the cue in some cases failed to shift the FoA can at this point not be determined. Looking at the responses of the fly to the displacement of a black vertical stripe showed that they can be categorized as no responses, syn-directional responses (following the direction of motion of the stripe) and anti-directional responses (in the opposite direction of the motion of the stripe). The yaw-torque patterns of the latter bared similarities with spontaneous body saccades and they most likely represented escape attempts of the fly. Syn-directional responses, however, were genuine object responses, distinguishable by a longer latency until they were elicited and a larger amplitude. These properties as well as the distribution of response polarities were not influenced by the presence or absence of a cue. When two stripes were displaced simultaneously in opposite directions the rate of no responses increased in comparison to the displacement of a single stripe. If one of the stripes was cued, both, the responses towards and away from the side of cue resembled the syn-directional responses. Significant progress was made with the elucidation of the neuronal underpinnings of SVA. Ablation of the mushroom bodies (MB) demonstrated their requirement for SVA. Furthermore, it was shown that dopamine signaling has to be balanced between too much and too little. Either inhibiting the synthesis of dopamine or its re-uptake at the synapse via the dDAT impaired the flies' susceptibility to cueing. Using the Gal4/UAS system, cell specific expression or knockdown of the dDAT was used to scrutinize the role of MB sub-compartments in SVA. The αβ-lobes turned out to be necessary and sufficient to maintain SVA. The Gal4-line c708a labels only a subset of Kenyon cells (KC) within the αβ-lobes, αβposterior. These cells stand out, because of (A) the mesh-like arrangement of their fibers within the lobes and (B) the fact that unlike the other KCs they bypass the calyx and thereby the main source of olfactory input to the MBs, forming connections only in the posterior accessory calyx (Tanaka et al., 2008). This structure receives no or only marginal olfactory input, suggesting for it a role in tasks other than olfaction. This study shows their requirement in a visual task by demonstrating that they are necessary to uphold SVA. Restoring dDAT function in these approximately only 90 cells was probably insufficient to lower the dopamine concentration at the relevant synapses and hence a rescue failed. Alternatively, the processes mediating SVA at the αβ-lobes might require an interplay between all of their KCs. In conclusion, the results provide an initial point for future research to fully understand the localization of and circuitry required for SVA in the brain. In the experiments described so far, attention has been externally guided. However, flies are also able to internally shift their FoA without any cues from the outside world. In a set of 60 consecutive simultaneous displacements of two stripes, they were more likely to produce a response with the same polarity as the preceding one than a random polarity selection predicted. This suggested a dwelling of the FoA on one side of the visual field. Assuming that each response was influenced by the previous one in a way that the probability to repeat the response polarity was increased by a certain factor (dwelling factor, df), a random selection of response type including a df was computed. Implementation of the df removed the difference between observed probability of polarity repetition and the one suggested by random selection. When the interval between displacements was iteratively increased to 5s, no significant df could be detected anymore for pauses longer than 4s. In conclusion, Drosophila has an attention span of approximately 4s. Flies with a mutation in the radish gene expressed no after-effect of cueing and had a shortened attention span of about 1s. The dDAT inhibitor methylphenidate is able to rescue the first, but does not affect the latter phenotype. Probably, radish is differently involved in the two mechanisms. This study showed, that endogenous (covert) shifts of spatially selective visual attention in the fly Drosophila can be internally and externally guided. The variables determining the quality of a cue turned out to be multifaceted and a more systematic approach is needed for a better understanding of what property or feature of the cue changes the way it is evaluated by the fly. A first step has been made to demonstrate that SVA is a fundamental process and compromising it can influence the characteristics of other behaviors like walking. The existence of an attention span, the dependence of SVA on dopamine as well as the susceptibility to pharmacological manipulations, which in humans are used to treat respective diseases, point towards striking similarities between SVA in humans and Drosophila.}, subject = {Taufliege}, language = {en} } @phdthesis{LuiblneeHermann2014, author = {Luibl [n{\´e}e Hermann], Christiane}, title = {The role of the neuropeptides NPF, sNPF, ITP and PDF in the circadian clock of Drosophila melanogaster}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-93796}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Organisms have evolved endogenous clocks which allow them to organize their behavior, metabolism and physiology according to the periodically changing environmental conditions on earth. Biological rhythms that are synchronized to daily changes in environment are governed by the so-called circadian clock. Since decades, chronobiologists have been investigating circadian clocks in various model organisms including the fruitfly Drosophila melanogaster, which was used in the present thesis. Anatomically, the circadian clock of the fruitfly consists of about 150 neurons in the lateral and dorsal protocerebrum, which are characterized by their position, morphology and neurochemistry. Some of these neurons had been previously shown to contain either one or several neuropeptides, which are thought to be the main signaling molecules used by the clock. The best investigated of these neuropeptides is the Pigment Dispersing Factor (PDF), which had been shown to constitute a synchronizing signal between clock neurons as well as an output factor of the clock. In collaboration with various coworkers, I investigated the roles of three other clock expressed neuropeptides for the generation of behavioral rhythms and the partly published, partly unpublished data are presented in this thesis. Thereby, I focused on the Neuropeptide F (NPF), short Neuropeptide F (sNPF) and the Ion Transport Peptide (ITP). We show that part of the neuropeptide composition within the clock network seems to be conserved among different Drosophila species. However, the PDF expression pattern in certain neurons varied in species deriving from lower latitudes compared to higher latitudes. Together with findings on the behavioral level provided by other people, these data suggest that different species may have altered certain properties of their clocks - like the neuropeptide expression in certain neurons - in order to adapt their behavior to different habitats. We then investigated locomotor rhythms in Drosophila melanogaster flies, in which neuropeptide circuits were genetically manipulated either by cell ablation or RNA interference (RNAi). We found that none of the investigated neuropeptides seems to be of equal importance for circadian locomotor rhythms as PDF. PDF had been previously shown to be necessary for rhythm maintenance in constant darkness (DD) as well as for the generation of morning (M) activity and for the right phasing of the evening (E) activity in entrained conditions. We now demonstrate that NPF and ITP seem to promote E activity in entrained conditions, but are clearly not the only factors doing so. In addition, ITP seems to reduce nighttime activity. Further, ITP and possibly also sNPF constitute weak period shortening components in DD, thereby opposing the effect of PDF. However, neither NPF or ITP, nor sNPF seem to be necessary in the clock neurons for maintaining rhythmicity in DD. It had been previously suggested that PDF is released rhythmically from the dorsal projection terminals. Now we discovered a rhythm in ITP immunostaining in the dorsal projection terminals of the ITP+ clock neurons in LD, suggesting a rhythm in peptide release also in the case of ITP. Rhythmic release of both ITP and PDF seems to be important to maintain rhythmic behavior in DD, since constantly high levels of PDF and ITP in the dorsal protocerebrum lead to behavioral arrhythmicity. Applying live-imaging techniques we further demonstrate that sNPF acts in an inhibitory way on few clock neurons, including some that are also activated by PDF, suggesting that it acts as signaling molecule within the clock network and has opposing effects to PDF. NPF did only evoke very little inhibitory responses in very few clock neurons, suggesting that it might rather be used as a clock output factor. We were not able to apply the same live-imaging approach for the investigation of the clock neuron responsiveness to ITP, but overexpression of ITP with various driver lines showed that the peptide most likely acts mainly in clock output pathways rather than inter-clock neuron communication. Taking together, I conclude that all investigated peptides contribute to the control of locomotor rhythms in the fruitfly Drosophila melanogaster. However, this control is in most aspects dominated by the actions of PDF and rather only fine-tuned or complemented by the other peptides. I assume that there is a high complexity in spatial and temporal action of the different neuropeptides in order to ensure correct signal processing within the clock network as well as clock output.}, subject = {Taufliege}, language = {en} } @article{BogdanSchultzGrosshans2013, author = {Bogdan, Sven and Schultz, J{\"o}rg and Grosshans, J{\"o}rg}, title = {Formin' cellular structures: Physiological roles of Diaphanous (Dia) in actin dynamics}, series = {Communicative \& Integrative Biology}, volume = {6}, journal = {Communicative \& Integrative Biology}, number = {e27634}, doi = {10.4161/cib.27634}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-121305}, year = {2013}, abstract = {Members of the Diaphanous (Dia) protein family are key regulators of fundamental actin driven cellular processes, which are conserved from yeast to humans. Researchers have uncovered diverse physiological roles in cell morphology, cell motility, cell polarity, and cell division, which are involved in shaping cells into tissues and organs. The identification of numerous binding partners led to substantial progress in our understanding of the differential functions of Dia proteins. Genetic approaches and new microscopy techniques allow important new insights into their localization, activity, and molecular principles of regulation.}, language = {en} } @article{HerterStauchGallantetal.2015, author = {Herter, Eva K. and Stauch, Maria and Gallant, Maria and Wolf, Elmar and Raabe, Thomas and Gallant, Peter}, title = {snoRNAs are a novel class of biologically relevant Myc targets}, series = {BMC Biology}, volume = {13}, journal = {BMC Biology}, number = {25}, doi = {10.1186/s12915-015-0132-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-124956}, year = {2015}, abstract = {Background Myc proteins are essential regulators of animal growth during normal development, and their deregulation is one of the main driving factors of human malignancies. They function as transcription factors that (in vertebrates) control many growth- and proliferation-associated genes, and in some contexts contribute to global gene regulation. Results We combine chromatin immunoprecipitation-sequencing (ChIPseq) and RNAseq approaches in Drosophila tissue culture cells to identify a core set of less than 500 Myc target genes, whose salient function resides in the control of ribosome biogenesis. Among these genes we find the non-coding snoRNA genes as a large novel class of Myc targets. All assayed snoRNAs are affected by Myc, and many of them are subject to direct transcriptional activation by Myc, both in Drosophila and in vertebrates. The loss of snoRNAs impairs growth during normal development, whereas their overexpression increases tumor mass in a model for neuronal tumors. Conclusions This work shows that Myc acts as a master regulator of snoRNP biogenesis. In addition, in combination with recent observations of snoRNA involvement in human cancer, it raises the possibility that Myc's transforming effects are partially mediated by this class of non-coding transcripts.}, language = {en} } @phdthesis{Dusik2015, author = {Dusik, Verena}, title = {Immunhistochemische und funktionelle Charakterisierung der Mitogen-aktivierten Proteinkinase p38 in der inneren Uhr von Drosophila melanogaster}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-124636}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Circadianes und Stress-System sind zwei physiologische Systeme, die dem Organismus helfen sich an Ver{\"a}nderungen ihrer Umwelt anzupassen. W{\"a}hrend letzteres spontane und schnelle Antworten auf akute, unvorhersehbare Umweltreize liefert, sagt das circadiane System t{\"a}glich wiederkehrende Ereignisse vorher and bereitet den Organismus so vorzeitig auf diese nahende Umweltver{\"a}nderung vor. Dennoch, trotz dieser unterschiedlichen Reaktionsmechanismen agieren beide Systeme nicht komplett autonom. Studien der vergangen Jahre belegen vielmehr eine Interaktion beider Systeme. So postulieren sie zum einem Unterschiede in der Stressantwort in Abh{\"a}ngigkeit von der Tageszeit zu der der Reiz auftritt und weisen zugleich auf eine Zunahme von gest{\"o}rten biologischen Tagesrhythmen, wie zum Beispiel Schlafst{\"o}rungen, in Folge von unkontrollierten oder exzessiven Stress hin. Ebenso liefern k{\"u}rzlich durchgef{\"u}hrte Studien an Vertebraten und Pilzen Hinweise, dass mit p38, eine Stress-aktivierte Kinase, an der Signalweiterleitung zur inneren Uhr beteiligt ist (Hayashi et al., 2003), sogar durch dieses endogene Zeitmesssystem reguliert wird (Vitalini et al., 2007; Lamb et al., 2011) und deuten damit erstmals eine m{\"o}gliche Verbindung zwischen Stress-induzierten und regul{\"a}ren rhythmischen Anpassungen des Organismus an Umweltver{\"a}nderungen an. Molekulare und zellul{\"a}re Mechanismen dieser Verkn{\"u}pfung sind bisher noch nicht bekannt. W{\"a}hrend die Rolle von p38 MAPK bei der Stress- und Immunantwort in Drosophila melanogaster gut charakterisiert ist, wurden Expression und Funktion von p38 in der inneren Uhr hingegen bislang nicht untersucht. Die hier vorliegende Arbeit hatte daher zum Ziel mittels immunhistochemischer, verhaltensphysiologischer und molekularer Methoden eine m{\"o}gliche Rolle der Stress-aktivierten Kinase im circadianen System der Fliege aufzudecken. Antik{\"o}rperf{\"a}rbungen sowie Studien mit Reporterlinien zeigen deutliche F{\"a}rbesignale in den s-LNv, l-LNv und DN1a und erbringen erstmals einen Nachweis f{\"u}r p38 Expression in den Uhrneuronen der Fliege. Ebenso scheint die Aktivit{\"a}t von p38 MAPK in den DN1a uhrgesteuert zu sein. So liegt p38 vermehrt in seiner aktiven Form in der Dunkelphase vor und zeigt, neben seiner circadian regulierten Aktivierung, zus{\"a}tzlich auch eine Inaktivierung durch Licht. 15-Minuten-Lichtpulse in der subjektiven Nacht f{\"u}hren zu einer signifikanten Reduktion von aktivierter, phosphorylierter p38 MAPK in den DN1a von Canton S Wildtypfliegen im Vergleich zu Fliegen ohne Lichtpuls-Behandlung. Aufzeichnungen der Lokomotoraktivit{\"a}t offenbaren zus{\"a}tzlich die Notwendigkeit von p38 MAPK f{\"u}r wildtypisches Timing der Abendaktivit{\"a}t sowie zum Erhalt von 24-Stunden-Verhaltensrhythmen unter konstanten Dauerdunkel-Bedindungen. So zeigen Fliegen mit reduzierten p38 Level in Uhrneuronen einen verz{\"o}gerten Beginn der Abendaktivit{\"a}t und stark verl{\"a}ngerte Freilaufperioden. In {\"U}bereinstimmung mit Effekten auf das Laufverhalten scheint dar{\"u}ber hinaus die Expression einer dominant-negativen Form von p38b in Drosophila's wichtigsten Uhrneuronen eine versp{\"a}tete nukle{\"a}re Translokation von Period zur Folge zu haben. Westernblots legen zus{\"a}tzlich einen Einfluss von p38 auf den Phosphorylierungsgrad von Period nahe und liefern damit einen m{\"o}gliche Erkl{\"a}rung f{\"u}r den versp{\"a}teten Kerneintritt des Uhrproteins. Abschließende St{\"u}tzung der Westernblotergebnisse bringen in vitro Kinasenassays und deuten auf p38 als eine potentielle „Uhrkinase" hin, welche auch in vivo Period an Serin 661 sowie weiteren potentiellen Phosphorylierungsstellen phosphorylieren k{\"o}nnte. Zusammengenommen deuten die Ergebnisse der hier vorliegenden Arbeit eindeutig auf eine bedeutende Rolle von p38, neben dessen Funkion im Stress-System, auch im circadianen System der Fliege hin und offenbaren damit die M{\"o}glichkeit, dass p38 als Schnittstelle zwischen beider Systeme fungiert.}, subject = {Taufliege}, language = {de} } @phdthesis{Ljaschenko2013, author = {Ljaschenko, Dmitrij}, title = {Hebbian plasticity at neuromuscular synapses of Drosophila}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-90465}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Synaptic plasticity determines the development of functional neural circuits. It is widely accepted as the mechanism behind learning and memory. Among different forms of synaptic plasticity, Hebbian plasticity describes an activity-induced change in synaptic strength, caused by correlated pre- and postsynaptic activity. Additionally, Hebbian plasticity is characterised by input specificity, which means it takes place only at synapses, which participate in activity. Because of its correlative nature, Hebbian plasticity suggests itself as a mechanism behind associative learning. Although it is commonly assumed that synaptic plasticity is closely linked to synaptic activity during development, the mechanistic understanding of this coupling is far from complete. In the present study channelrhodopsin-2 was used to evoke activity in vivo, at the glutamatergic Drosophila neuromuscular junction. Remarkably, correlated pre- and postsynaptic stimulation led to increased incorporation of GluR-IIA-type glutamate receptors into postsynaptic receptor fields, thus boosting postsynaptic sensitivity. This phenomenon is input-specific. Conversely, GluR-IIA was rapidly removed from synapses at which neurotransmitter release failed to evoke substantial postsynaptic depolarisation. This mechanism might be responsible to tame uncontrolled receptor field growth. Combining these results with developmental GluR-IIA dynamics leads to a comprehensive physiological concept, where Hebbian plasticity guides growth of postsynaptic receptor fields and sparse transmitter release stabilises receptor fields by preventing overgrowth. Additionally, a novel mechanism of retrograde signaling was discovered, where direct postsynaptic channelrhodopsin-2 based stimulation, without involvement of presynaptic neurotransmitter release, leads to presynaptic depression. This phenomenon is reminiscent of a known retrograde homeostatic mechanism, of inverted polarity, where neurotransmitter release is upregulated, upon reduction of postsynaptic sensitivity.}, subject = {Synapse}, language = {en} } @phdthesis{Chen2012, author = {Chen, Yi-chun}, title = {Experimental access to the content of an olfactory memory trace in larval Drosophila}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-83705}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Animals need to evaluate their experiences in order to cope with new situations they encounter. This requires the ability of learning and memory. Drosophila melanogaster lends itself as an animal model for such research because elaborate genetic techniques are available. Drosphila larva even saves cellular redundancy in parts of its nervous system. My Thesis has two parts dealing with associative olfactory learning in larval Drosophila. Firstly, I tackle the question of odour processing in respect to odour quality and intensity. Secondly, by focusing on the evolutionarily conserved presynaptic protein Synapsin, olfactory learning on the cellular and molecular level is investigated. Part I.1. provides a behaviour-based estimate of odour similarity in larval Drosophila by using four recognition-type experiments to result in a combined, task-independent estimate of perceived difference between odour-pairs. A further comparison of these combined perceived differences to published calculations of physico-chemical difference reveals a weak correlation between perceptual and physico-chemical similarity. Part I.2. focuses on how odour intensity is interpreted in the process of olfactory learning in larval Drosophila. First, the dose-effect curves of learnability across odour intensities are described in order to choose odour intensities such that larvae are trained at intermediate odour intensity, but tested for retention either with that trained intermediate odour intensity, or with respectively HIGHer or LOWer intensities. A specificity of retention for the trained intensity is observed for all the odours used. Such intensity specificity of learning adds to appreciate the richness in 'content' of olfactory memory traces, and to define the demands on computational models of associative olfactory memory trace formation. In part II.1. of the thesis, the cellular site and molecular mode of Synapsin function is investigated- an evolutionarily conserved, presynaptic vesicular phosphoprotein. On the cellular level, the study shows a Synapsin-dependent memory trace in the mushroom bodies, a third-order "cortical" brain region of the insects; on the molecular level, Synapsin engages as a downstream element of the AC-cAMP-PKA signalling cascade.}, subject = {Taufliege}, language = {en} } @phdthesis{Schleyer2012, author = {Schleyer, Michael}, title = {Integrating past, present and future: mechanisms of a simple decision in larval Drosophila}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-78923}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Is behaviour response or action? In this Thesis I study this question regarding a rather simple organism, the larva of the fruit fly Drosophila melanogaster. Despite its numerically simple brain and limited behavioural repertoire, it is nevertheless capable to accomplish surprisingly complex tasks. After association of an odour and a rewarding or punishing reinforcement signal, the learnt odour is able to retrieve the formed memory trace. However, the activated memory trace is not automatically turned into learned behaviour: Appetitive memory traces are behaviourally expressed only in absence of the rewarding tastant whereas aversive memory traces are behaviourally expressed in the presence of the punishing tastant. The 'decision' whether to behaviourally express a memory trace or not relies on a quantitive comparison between memory trace and current situation: only if the memory trace (after odour-sugar training) predicts a stronger sugar reward than currently present, animals show appetitive conditioned behaviour. Learned appetitive behaviour is best seen as active search for food - being pointless in the presence of (enough) food. Learned aversive behaviour, in turn, can be seen as escape from a punishment - being pointless in absence of punishment. Importantly, appetitive and aversive memory traces can be formed and retrieved independent from each other but also can, under appriate circumstances, summate to jointly organise conditioned behaviour. In contrast to learned behaviour, innate olfactory behaviour is not influenced by gustatory processing and vice versa. Thus, innate olfactory and gustatory behaviour is rather rigid and reflexive in nature, being executed almost regardless of other environmental cues. I suggest a behavioural circuit-model of chemosensory behaviour and the 'decision' process whether to behaviourally express a memory trace or not. This model reflects known components of the larval chemobehavioural circuit and provides clear hypotheses about the kinds of architecture to look for in the currently unknown parts of this circuit. The second chapter deals with gustatory perception and processing (especially of bitter substances). Quinine, the bitter tastant in tonic water and bitter lemon, is aversive for larvae, suppresses feeding behaviour and can act as aversive reinforcer in learning experiments. However, all three examined behaviours differ in their dose-effect dynamics, suggesting different molecular and cellular processing streams at some level. Innate choice behaviour, thought to be relatively reflexive and hard-wired, nevertheless can be influenced by the gustatory context. That is, attraction toward sweet tastants is decreased in presence of bitter tastants. The extent of this inhibitory effect depends on the concentration of both sweet and bitter tastant. Importantly, sweet tastants differ in their sensitivity to bitter interference, indicating a stimulus-specific mechanism. The molecular and cellular processes underlying the inhibitory effect of bitter tastants are unknown, but the behavioural results presented here provide a framework to further investigate interactions of gustatory processing streams.}, subject = {Lernen}, language = {en} } @phdthesis{Cook2012, author = {Cook, Mandy}, title = {The neurodegenerative Drosophila melanogaster AMPK mutant loechrig}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-72027}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {In dieser Doktorarbeit wird die Drosophila Mutante loechrig (loe), die progressive Degeneration des Nervensystems aufweist, weiter beschrieben. In der loe Mutante fehlt eine neuronale Isoform der γ- Untereinheit der Proteinkinase AMPK (AMP-activated protein kinase). Die heterotrimere AMPK (auch als SNF4Aγ bekannt) kontrolliert das Energieniveau der Zelle, was st{\"a}ndiges Beobachten des ATP/AMP- Verh{\"a}ltnis erfordert. AMPK wird durch niedrige Energiekonzentrationen und Beeintr{\"a}chtigungen im Metabolismus, wie zum Beispiel Sauerstoffmangel, aktiviert und reguliert mehrere wichtige Signaltransduktionswege, die den Zellmetabolismus kontrollieren. Jedoch ist die Rolle von AMPK im neuronalen {\"U}berleben noch unklar. Eines der Proteine, dass von AMPK reguliert wird, ist HMGR (hydroxymethylglutaryl-CoA- reductase), ein Schl{\"u}sselenzym in der Cholesterin- und Isoprenoidsynthese. Es wurde gezeigt, dass wenn die Konzentration von HMGR manipuliert wird, auch der Schweregrad des neurodegenerativen Ph{\"a}notyps in loe beeinflusst wird. Obwohl die regulatorische Rolle von AMPK auf HMGR in Drosophila konserviert ist, k{\"o}nnen Insekten Cholesterin nicht de novo synthetisieren. Dennoch ist der Syntheseweg von Isoprenoiden zwischen Vertebraten und Insekten evolution{\"a}r konserviert. Isoprenylierung von Proteinen, wie zum Beispiel von kleinen G-Proteinen, stellt den Proteinen einen hydophobischen Anker bereit, mit denen sie sich an die Zellmembran binden k{\"o}nnen, was in anschließender Aktivierung resultieren kann. In dieser Doktorarbeit wird gezeigt, dass die loe Mutation die Prenylierung von Rho1 und den LIM-Kinasesignalweg beeinflusst, was eine wichtige Rolle im Umsatz von Aktin und axonalem Auswachsen spielt. Die Ergebnisse weisen darauf hin, dass die Mutation in LOE, Hyperaktivit{\"a}t des Isoprenoidsynthesewegs verursacht, was zur erh{\"o}hten Farnesylierung von Rho1 und einer dementsprechend h{\"o}heren Konzentration von Phospho- Cofilin f{\"u}hrt. Eine Mutation in Rho1 verbessert den neurodegenerativen Ph{\"a}notyp und die Lebenserwartung von loe. Der Anstieg vom inaktiven Cofilin in loe f{\"u}hrt zu einer Zunahme von filament{\"o}sen Aktin. Aktin ist am Auswachen von Neuronen beteiligt und Experimente in denen loe Neurone analysiert wurden, gaben wertvolle Einblicke in eine m{\"o}gliche Rolle die AMPK, und dementsprechend Aktin, im Neuronenwachstum spielt. Des Weiteren wurde demonstriert, dass Neurone, die von der loe Mutante stamen, einen verlangsamten axonalen Transport aufweisen, was darauf hinweist dass Ver{\"a}nderungen, die durch den Einfluss von loe auf den Rho1 Signalweg im Zytoskelettnetzwerk hervorgerufen wurden, zur St{\"o}rung des axonalen Transports und anschließenden neuronalen Tod f{\"u}hren. Es zeigte außerdem, dass Aktin nicht nur am neuronalen Auswachsen beteiligt ist, sondern auch wichtig f{\"u}r die Aufrechterhaltung von Neuronen ist. Das bedeutet, dass {\"A}nderungen der Aktindynamik zur progressiven Degeneration von Neuronen f{\"u}hren kann. Zusammenfassend unterstreichen diese Ergebnisse die wichtige Bedeutung von AMPK in den Funktionen und im {\"U}berleben von Neuronen und er{\"o}ffnen einen neuartigen funktionellen Mechanismus in dem {\"A}nderungen in AMPK neuronale Degeneration hervorrufen kann.}, subject = {Taufliege}, language = {en} }