@article{RodriguesPopovKayeetal.2013, author = {Rodrigues, L{\´e}nia and Popov, Nikita and Kaye, Kenneth M. and Simas, J. Pedro}, title = {Stabilization of Myc through Heterotypic Poly-Ubiquitination by mLANA Is Critical for \(\gamma\)-Herpesvirus Lymphoproliferation}, series = {PLoS PATHOGENS}, volume = {9}, journal = {PLoS PATHOGENS}, number = {8}, doi = {10.1371/journal.ppat.1003554}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-131227}, pages = {e1003554}, year = {2013}, abstract = {Host colonization by lymphotropic \(\gamma\)-herpesviruses depends critically on expansion of viral genomes in germinal center (GC) B-cells. Myc is essential for the formation and maintenance of GCs. Yet, the role of Myc in the pathogenesis of \(\gamma\)-cherpesviruses is still largely unknown. In this study, Myc was shown to be essential for the lymphotropic \(\gamma\)-herpesvirus MuHV- 4 biology as infected cells exhibited increased expression of Myc signature genes and the virus was unable to expand in Myc defficient GC B- cells. We describe a novel strategy of a viral protein activating Myc through increased protein stability resulting in increased progression through the cell cycle. This is acomplished by modulating a physiological posttranslational regulatory pathway of Myc. The molecular mechanism involves Myc heterotypic poly- ubiquitination mediated via the viral E3 ubiquitin- ligase mLANA protein. \(EC_5S^{mLANA}\) modulates cellular control of Myc turnover by antagonizing \(SCF^{Fbw7}\) mediated proteasomal degradation of Myc, mimicking \(SCF^{\beta-TrCP}\). The findings here reported reveal that modulation of Myc is essential for \(\gamma\)-herpesvirus persistent infection, establishing a link between virus induced lymphoproliferation and disease.}, language = {en} } @article{MollRocesFederle2013, author = {Moll, Karin and Roces, Flavio and Federle, Walter}, title = {How Load-Carrying Ants Avoid Falling Over: Mechanical Stability during Foraging in Atta vollenweideri Grass-Cutting Ants}, series = {PLoS ONE}, volume = {8}, journal = {PLoS ONE}, number = {1}, doi = {10.1371/journal.pone.0052816}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-131211}, pages = {e52816}, year = {2013}, abstract = {Background: Foraging workers of grass-cutting ants (Atta vollenweideri) regularly carry grass fragments larger than their Fragment length has been shown to influence the ants' running speed and thereby the colony's food intake rate. We investigated whether and how grass-cutting ants maintain stability when carrying fragments of two different lengths but identical mass. Principal Findings: Ants carried all fragments in an upright, backwards-tilted position, but held long fragments more vertically than short ones. All carrying ants used an alternating tripod gait, where mechanical stability was increased by overlapping stance phases of consecutive steps. The overlap was greatest for ants carrying long fragments, resulting in more legs contacting the ground simultaneously. For all ants, the projection of the total centre of mass (ant and fragment) was often outside the supporting tripod, i.e. the three feet that would be in stance for a non-overlapping tripod gait. Stability was only achieved through additional legs in ground contact. Tripod stability (quantified as the minimum distance of the centre of mass to the edge of the supporting tripod) was significantly smaller for ants with long fragments. Here, tripod stability was lowest at the beginning of each step, when the center of mass was near the posterior margin of the supporting tripod. By contrast, tripod stability was lowest at the end of each step for ants carrying short fragments. Consistently, ants with long fragments mainly fell backwards, whereas ants carrying short fragments mainly fell forwards or to the side. Assuming that transporting ants adjust neither the fragment angle nor the gait, they would be less stable and more likely to fall over. Conclusions: In grass-cutting ants, the need to maintain static stability when carrying long grass fragments has led to multiple kinematic adjustments at the expense of a reduced material transport rate.}, language = {en} } @article{WolfAkrapMargetal.2013, author = {Wolf, Annette and Akrap, Nina and Marg, Berenice and Galliardt, Helena and Heiligentag, Martyna and Humpert, Fabian and Sauer, Markus and Kaltschmidt, Barbara and Kaltschmidt, Christian and Seidel, Thorsten}, title = {Elements of Transcriptional Machinery Are Compatible among Plants and Mammals}, series = {PLoS ONE}, volume = {8}, journal = {PLoS ONE}, number = {1}, doi = {10.1371/journal.pone.0053737}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-131203}, pages = {e53737}, year = {2013}, abstract = {In the present work, the objective has been to analyse the compatibility of plant and human transcriptional machinery. The experiments revealed that nuclear import and export are conserved among plants and mammals. Further it has been shown that transactivation of a human promoter occurs by human transcription factor NF-\(\kappa\) B in plant cells, demonstrating that the transcriptional machinery is highly conserved in both kingdoms. Functionality was also seen for regulatory elements of NF-\(\kappa\) B such as its inhibitor I\(\kappa\)B isoform \(\alpha\) that negatively regulated the transactivation activity of the p50/RelA heterodimer by interaction with NF-\(\kappa\)B in plant cells. Nuclear export of RelA could be demonstrated by FRAP-measurements so that RelA shows nucleo-cytoplasmic shuttling as reported for RelA in mammalian cells. The data reveals the high level of compatibility of human transcriptional elements with the plant transcriptional machinery. Thus, Arabidopsis thaliana mesophyll protoplasts might provide a new heterologous expression system for the investigation of the human NF-\(\kappa\)B signaling pathways. The system successfully enabled the controlled manipulation of NF-\(\kappa\)B activity. We suggest the plant protoplast system as a tool for reconstitution and analyses of mammalian pathways and for direct observation of responses to e. g. pharmaceuticals. The major advantage of the system is the absence of interference with endogenous factors that affect and crosstalk with the pathway.}, language = {en} } @article{KatoLuRapaportetal.2013, author = {Kato, Hiroki and Lu, Qiping and Rapaport, Doron and Kozjak-Pavlovic, Vera}, title = {Tom70 Is Essential for PINK1 Import into Mitochondria}, series = {PLoS ONE}, volume = {8}, journal = {PLoS ONE}, number = {3}, doi = {10.1371/journal.pone.0058435}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-131061}, pages = {e58435}, year = {2013}, abstract = {PTEN induced kinase 1 (PINK1) is a serine/threonine kinase in the outer membrane of mitochondria (OMM), and known as a responsible gene of Parkinson's disease (PD). The precursor of PINK1 is synthesized in the cytosol and then imported into the mitochondria via the translocase of the OMM (TOM) complex. However, a large part of PINK1 import mechanism remains unclear. In this study, we examined using cell-free system the mechanism by which PINK1 is targeted to and assembled into mitochondria. Surprisingly, the main component of the import channel, Tom40 was not necessary for PINK1 import. Furthermore, we revealed that the import receptor Tom70 is essential for PINK1 import. In addition, we observed that although PINK1 has predicted mitochondrial targeting signal, it was not processed by the mitochondrial processing peptidase. Thus, our results suggest that PINK1 is imported into mitochondria by a unique pathway that is independent of the TOM core complex but crucially depends on the import receptor Tom70.}, language = {en} } @article{YanHongChenetal.2013, author = {Yan, Yan and Hong, Ni and Chen, Tiansheng and Li, Mingyou and Wang, Tiansu and Guan, Guijun and Qiao, Yongkang and Chen, Songlin and Schartl, Manfred and Li, Chang-Ming and Hong, Yunhan}, title = {p53 Gene Targeting by Homologous Recombination in Fish ES Cells}, series = {PLoS One}, volume = {8}, journal = {PLoS One}, number = {3}, doi = {10.1371/journal.pone.0059400}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-133416}, pages = {e59400}, year = {2013}, abstract = {Background: Gene targeting (GT) provides a powerful tool for the generation of precise genetic alterations in embryonic stem (ES) cells to elucidate gene function and create animal models for human diseases. This technology has, however, been limited to mouse and rat. We have previously established ES cell lines and procedures for gene transfer and selection for homologous recombination (HR) events in the fish medaka (Oryzias latipes). Methodology and Principal Findings: Here we report HR-mediated GT in this organism. We designed a GT vector to disrupt the tumor suppressor gene p53 (also known as tp53). We show that all the three medaka ES cell lines, MES1 similar to MES3, are highly proficient for HR, as they produced detectable HR without drug selection. Furthermore, the positive-negative selection (PNS) procedure enhanced HR by similar to 12 folds. Out of 39 PNS-resistant colonies analyzed, 19 (48.7\%) were positive for GT by PCR genotyping. When 11 of the PCR-positive colonies were further analyzed, 6 (54.5\%) were found to be bona fide homologous recombinants by Southern blot analysis, sequencing and fluorescent in situ hybridization. This produces a high efficiency of up to 26.6\% for p53 GT under PNS conditions. We show that p53 disruption and long-term propagation under drug selection conditions do not compromise the pluripotency, as p53-targeted ES cells retained stable growth, undifferentiated phenotype, pluripotency gene expression profile and differentiation potential in vitro and in vivo. Conclusions: Our results demonstrate that medaka ES cells are proficient for HR-mediated GT, offering a first model organism of lower vertebrates towards the development of full ES cell-based GT technology.}, language = {en} } @article{HendriksmaKuetingHaerteletal.2013, author = {Hendriksma, Harmen P. and K{\"u}ting, Meike and H{\"a}rtel, Stephan and N{\"a}ther, Astrid and Dohrmann, Anja B. and Steffan-Dewenter, Ingolf and Tebbe, Christoph C.}, title = {Effect of Stacked Insecticidal Cry Proteins from Maize Pollen on Nurse Bees (Apis mellifera carnica) and Their Gut Bacteria}, series = {PLoS ONE}, volume = {8}, journal = {PLoS ONE}, number = {3}, doi = {10.1371/journal.pone.0059589}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-131025}, pages = {e59589}, year = {2013}, abstract = {Honey bee pollination is a key ecosystem service to nature and agriculture. However, biosafety research on genetically modified crops rarely considers effects on nurse bees from intact colonies, even though they receive and primarily process the largest amount of pollen. The objective of this study was to analyze the response of nurse bees and their gut bacteria to pollen from Bt maize expressing three different insecticidal Cry proteins (Cry1A.105, Cry2Ab2, and Cry3Bb1). Naturally Cry proteins are produced by bacteria (Bacillus thuringiensis). Colonies of Apis mellifera carnica were kept during anthesis in flight cages on field plots with the Bt maize, two different conventionally bred maize varieties, and without cages, 1-km outside of the experimental maize field to allow ad libitum foraging to mixed pollen sources. During their 10-days life span, the consumption of Bt maize pollen had no effect on their survival rate, body weight and rates of pollen digestion compared to the conventional maize varieties. As indicated by ELISA-quantification of Cry1A.105 and Cry3Bb1, more than 98\% of the recombinant proteins were degraded. Bacterial population sizes in the gut were not affected by the genetic modification. Bt-maize, conventional varieties and mixed pollen sources selected for significantly different bacterial communities which were, however, composed of the same dominant members, including Proteobacteria in the midgut and Lactobacillus sp. and Bifidobacterium sp. in the hindgut. Surprisingly, Cry proteins from natural sources, most likely B. thuringiensis, were detected in bees with no exposure to Bt maize. The natural occurrence of Cry proteins and the lack of detectable effects on nurse bees and their gut bacteria give no indication for harmful effects of this Bt maize on nurse honey bees.}, language = {en} } @article{ForconiCanapaBaruccaetal.2013, author = {Forconi, Mariko and Canapa, Adriana and Barucca, Marco and Biscotti, Maria A. and Capriglione, Teresa and Buonocore, Francesco and Fausto, Anna M. and Makapedua, Daisy M. and Pallavicini, Alberto and Gerdol, Marco and De Moro, Gianluca and Scapigliati, Giuseppe and Olmo, Ettore and Schartl, Manfred}, title = {Characterization of Sex Determination and Sex Differentiation Genes in Latimeria}, series = {PLoS ONE}, volume = {8}, journal = {PLoS ONE}, number = {4}, doi = {10.1371/journal.pone.0056006}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-130995}, pages = {e56006}, year = {2013}, abstract = {Genes involved in sex determination and differentiation have been identified in mice, humans, chickens, reptiles, amphibians and teleost fishes. However, little is known of their functional conservation, and it is unclear whether there is a common set of genes shared by all vertebrates. Coelacanths, basal Sarcopterygians and unique "living fossils", could help establish an inventory of the ancestral genes involved in these important developmental processes and provide insights into their components. In this study 33 genes from the genome of Latimeria chalumnae and from the liver and testis transcriptomes of Latimeria menadoensis, implicated in sex determination and differentiation, were identified and characterized and their expression levels measured. Interesting findings were obtained for GSDF, previously identified only in teleosts and now characterized for the first time in the sarcopterygian lineage; FGF9, which is not found in teleosts; and DMRT1, whose expression in adult gonads has recently been related to maintenance of sexual identity. The gene repertoire and testis-specific gene expression documented in coelacanths demonstrate a greater similarity to modern fishes and point to unexpected changes in the gene regulatory network governing sexual development.}, language = {en} } @article{SporbertCseresnyesHeidbrederetal.2013, author = {Sporbert, Anje and Cseresnyes, Zoltan and Heidbreder, Meike and Domaing, Petra and Hauser, Stefan and Kaltschmidt, Barbara and Kaltschmidt, Christian and Heilemann, Mike and Widera, Darius}, title = {Simple Method for Sub-Diffraction Resolution Imaging of Cellular Structures on Standard Confocal Microscopes by Three-Photon Absorption of Quantum Dots}, series = {PLoS ONE}, volume = {8}, journal = {PLoS ONE}, number = {5}, doi = {10.1371/journal.pone.0064023}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-130963}, pages = {e64023}, year = {2013}, abstract = {This study describes a simple technique that improves a recently developed 3D sub-diffraction imaging method based on three-photon absorption of commercially available quantum dots. The method combines imaging of biological samples via tri-exciton generation in quantum dots with deconvolution and spectral multiplexing, resulting in a novel approach for multi-color imaging of even thick biological samples at a 1.4 to 1.9-fold better spatial resolution. This approach is realized on a conventional confocal microscope equipped with standard continuous-wave lasers. We demonstrate the potential of multi-color tri-exciton imaging of quantum dots combined with deconvolution on viral vesicles in lentivirally transduced cells as well as intermediate filaments in three-dimensional clusters of mouse-derived neural stem cells (neurospheres) and dense microtubuli arrays in myotubes formed by stacks of differentiated C2C12 myoblasts.}, language = {en} } @article{ScharmannThornhamGrafeetal.2013, author = {Scharmann, Mathias and Thornham, Daniel G. and Grafe, T. Ulmar and Federle, Walter}, title = {A Novel Type of Nutritional Ant-Plant Interaction: Ant Partners of Carnivorous Pitcher Plants Prevent Nutrient Export by Dipteran Pitcher Infauna}, series = {PLoS ONE}, volume = {8}, journal = {PLoS ONE}, number = {5}, doi = {10.1371/journal.pone.0063556}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-130952}, pages = {e63556}, year = {2013}, abstract = {Many plants combat herbivore and pathogen attack indirectly by attracting predators of their herbivores. Here we describe a novel type of insect-plant interaction where a carnivorous plant uses such an indirect defence to prevent nutrient loss to kleptoparasites. The ant Camponotus schmitzi is an obligate inhabitant of the carnivorous pitcher plant Nepenthes bicalcarata in Borneo. It has recently been suggested that this ant-plant interaction is a nutritional mutualism, but the detailed mechanisms and the origin of the ant-derived nutrient supply have remained unexplained. We confirm that N. bicalcarata host plant leaves naturally have an elevated \(^{15}N/^{14}N\) stable isotope abundance ratio (\(\delta ^{15}N\)) when colonised by C. schmitzi. This indicates that a higher proportion of the plants' nitrogen is insect-derived when C. schmitzi ants are present (ca. 100\%, vs. 77\% in uncolonised plants) and that more nitrogen is available to them. We demonstrated direct flux of nutrients from the ants to the host plant in a \(^{15}N\) pulse-chase experiment. As C. schmitzi ants only feed on nectar and pitcher contents of their host, the elevated foliar \(\delta ^{15}N\) cannot be explained by classic ant-feeding (myrmecotrophy) but must originate from a higher efficiency of the pitcher traps. We discovered that C. schmitzi ants not only increase the pitchers' capture efficiency by keeping the pitchers' trapping surfaces clean, but they also reduce nutrient loss from the pitchers by predating dipteran pitcher inhabitants (infauna). Consequently, nutrients the pitchers would have otherwise lost via emerging flies become available as ant colony waste. The plants' prey is therefore conserved by the ants. The interaction between C. schmitzi, N. bicalcarata and dipteran pitcher infauna represents a new type of mutualism where animals mitigate the damage by nutrient thieves to a plant.}, language = {en} } @article{KarlDandekar2013, author = {Karl, Stefan and Dandekar, Thomas}, title = {Jimena: Efficient computing and system state identification for genetic regulatory networks}, series = {BMC Bioinformatics}, volume = {14}, journal = {BMC Bioinformatics}, doi = {10.1186/1471-2105-14-306}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-128671}, year = {2013}, abstract = {Background: Boolean networks capture switching behavior of many naturally occurring regulatory networks. For semi-quantitative modeling, interpolation between ON and OFF states is necessary. The high degree polynomial interpolation of Boolean genetic regulatory networks (GRNs) in cellular processes such as apoptosis or proliferation allows for the modeling of a wider range of node interactions than continuous activator-inhibitor models, but suffers from scaling problems for networks which contain nodes with more than ~10 inputs. Many GRNs from literature or new gene expression experiments exceed those limitations and a new approach was developed. Results: (i) As a part of our new GRN simulation framework Jimena we introduce and setup Boolean-tree-based data structures; (ii) corresponding algorithms greatly expedite the calculation of the polynomial interpolation in almost all cases, thereby expanding the range of networks which can be simulated by this model in reasonable time. (iii) Stable states for discrete models are efficiently counted and identified using binary decision diagrams. As application example, we show how system states can now be sampled efficiently in small up to large scale hormone disease networks (Arabidopsis thaliana development and immunity, pathogen Pseudomonas syringae and modulation by cytokinins and plant hormones). Conclusions: Jimena simulates currently available GRNs about 10-100 times faster than the previous implementation of the polynomial interpolation model and even greater gains are achieved for large scale-free networks. This speed-up also facilitates a much more thorough sampling of continuous state spaces which may lead to the identification of new stable states. Mutants of large networks can be constructed and analyzed very quickly enabling new insights into network robustness and behavior.}, language = {en} }